Skip to main content
Log in

Automated mechanical ventilation: adapting decision making to different disease states

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The purpose of the present study is to introduce a novel methodology for adapting and upgrading decision-making strategies concerning mechanical ventilation with respect to different disease states into our fuzzy-based expert system, AUTOPILOT-BT. The special features are: (1) Extraction of clinical knowledge in analogy to the daily routine. (2) An automated process to obtain the required information and to create fuzzy sets. (3) The controller employs the derived fuzzy rules to achieve the desired ventilation status. For demonstration this study focuses exclusively on the control of arterial CO2 partial pressure (paCO2). Clinical knowledge from 61 anesthesiologists was acquired using a questionnaire from which different disease-specific fuzzy sets were generated to control paCO2. For both, patients with healthy lung and with acute respiratory distress syndrome (ARDS) the fuzzy sets show different shapes. The fuzzy set “normal”, i.e., “target paCO2 area”, ranges from 35 to 39 mmHg for healthy lungs and from 39 to 43 mmHg for ARDS lungs. With the new fuzzy sets our AUTOPILOT-BT reaches the target paCO2 within maximal three consecutive changes of ventilator settings. Thus, clinical knowledge can be extended, updated, and the resulting mechanical ventilation therapies can be individually adapted, analyzed, and evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bates JH, Young MP (2003) Applying fuzzy logic to medical decision making in the intensive care unit. Am J Respir Crit Care Med 167(7):948–952

    Article  PubMed  Google Scholar 

  2. Boegl K, Adlassnig KP, Hayashi Y, Rothenfluh TE, Leitich H (2004) Knowledge acquisition in the fuzzy knowledge representation framework of a medical consultation system. Artif Intell Med 30(1):1–26

    Article  PubMed  Google Scholar 

  3. Bouadma L, Lellouche F, Cabello B, Taille S, Mancebo J, Dojat M, Brochard L (2005) Computer-driven management of prolonged mechanical ventilation and weaning: a pilot study. Intensive Care Med 31(10):1446–1450

    Article  PubMed  Google Scholar 

  4. Carlo WA, Pacifico L, Chatburn RL, Fanaroff AA (1986) Efficacy of computer-assisted management of respiratory failure in neonates. Pediatrics 78(1):139–143

    PubMed  CAS  Google Scholar 

  5. Dojat M, Brochard L, Lemaire F, Harf A (1992) A knowledge-based system for assisted ventilation of patients in intensive care units. Int J Clin Monit Comput 9(4):239–250

    Article  PubMed  CAS  Google Scholar 

  6. Dojat M, Harf A, Touchard D, Laforest M, Lemaire F, Brochard L (1996) Evaluation of a knowledge-based system providing ventilatory management and decision for extubation. Am J Respir Crit Care Med 153(3):997–1004

    PubMed  CAS  Google Scholar 

  7. Dojat M, Pachet F, Guessoum Z, Touchard D, Harf A, Brochard L (1997) NeoGanesh: a working system for the automated control of assisted ventilation in ICUs. Artif Intell Med 11(2):97–117

    Article  PubMed  CAS  Google Scholar 

  8. Dojat M, Harf A, Touchard D, Lemaire F, Brochard L (2000) Clinical evaluation of a computer-controlled pressure support mode. Am J Respir Crit Care Med 161(4 Pt 1):1161–1166

    Google Scholar 

  9. Hernandez-Sande C, Moret-Bonillo V, Alonso-Betanzos A (1989) ESTER: an expert system for management of respiratory weaning therapy. IEEE Trans Biomed Eng 36(5):559–564

    Article  PubMed  CAS  Google Scholar 

  10. Jandre FC, Modesto FC, Carvalho AR, Giannella-Neto A (2008) The endotracheal tube biases the estimates of pulmonary recruitment and overdistension. Med Biol Eng Comput 46(1):69–73

    Article  PubMed  Google Scholar 

  11. Jensen M, Lozano S, Gottlieb D, Guttmann J, Möller K (2008) An evaluation of end-tidal CO2 change following alterations in ventilation frequency. In: Vander Sloten J, Verdonck P, Nyssen M, Haueisen J (eds) Proceedings of ECIFMBE 2008, IFMBE, 22

  12. Kacmarek RM, Venegas J (1987) Mechanical ventilatory rates and tidal volumes. Respir Care 32:466–478

    Google Scholar 

  13. Kwok HF, Linkens DA, Mahfouf M, Mills GH (2003) Rule-base derivation for intensive care ventilator control using ANFIS. Artif Intell Med 29(3):185–201

    Article  PubMed  CAS  Google Scholar 

  14. Lellouche F, Mancebo J, Jolliet P, Roeseler J, Schortgen F, Dojat M, Cabello B, Bouadma L, Rodriguez P, Maggiore S, Reynaert M, Mersmann S, Brochard L (2006) A multicenter randomized trial of computer-driven protocolized weaning from mechanical ventilation. Am J Respir Crit Care Med 174(8):894–900

    Article  PubMed  Google Scholar 

  15. Lozano S, Möller K, Brendle A, Gottlieb D, Schumann S, Stahl CA, Guttmann J (2008) AUTOPILOT-BT: a system for knowledge and model based mechanical ventilation. Technol Health Care 16(1):1–11

    PubMed  CAS  Google Scholar 

  16. Miller PL (1985) Goal-directed critiquing by computer: ventilator management. Comput Biomed Res 18(5):422–438

    Article  PubMed  CAS  Google Scholar 

  17. Nemoto T, Hatzakis GE, Thorpe CW, Olivenstein R, Dial S, Bates JH (1999) Automatic control of pressure support mechanical ventilation using fuzzy logic. Am J Respir Crit Care Med 160(2):550–556

    PubMed  CAS  Google Scholar 

  18. Rudowski R, Frostell C, Gill H (1989) A knowledge-based support system for mechanical ventilation of the lungs. The KUSIVAR concept and prototype. Comput Methods Programs Biomed 30(1):59–70

    Article  PubMed  CAS  Google Scholar 

  19. Schaublin J, Derighetti M, Feigenwinter P, Petersen-Felix S, Zbinden AM (1996) Fuzzy logic control of mechanical ventilation during anaesthesia. Br J Anaesth 77(5):636–641

    PubMed  CAS  Google Scholar 

  20. Shahsavar N, Ludwigs U, Blomqvist H, Gill H, Wigertz O, Matell G (1995) Evaluation of a knowledge-based decision-support system for ventilator therapy management. Artif Intell Med 7(1):37–52

    Article  PubMed  CAS  Google Scholar 

  21. Sittig DF, Pace NL, Gardner RM, Beck E, Morris AH (1989) Implementation of a computerized patient advice system using the HELP clinical information system. Comput Biomed Res 22(5):474–487

    Article  PubMed  CAS  Google Scholar 

  22. Sun Y, Kohane I, Stark AR (1994) Fuzzy logic assisted control of inspired oxygen in ventilated newborn infants. Proc Annu Symp Comput Appl Med Care: 757–761

  23. Tehrani FT (2008) Automatic control of mechanical ventilation. Part 1: theory and history of the technology. J Clin Monit Comput 22(6):409–415

    Article  PubMed  Google Scholar 

  24. Tehrani FT (2008) Automatic control of mechanical ventilation. Part 2: the existing techniques and future trends. J Clin Monit Comput 22(6):417–424

    Article  PubMed  Google Scholar 

  25. Tehrani FT, Roum JH (2008) Intelligent decision support systems for mechanical ventilation. Artif Intell Med 44(3):171–182

    Article  PubMed  Google Scholar 

  26. Tong DA (1991) Weaning patients from mechanical ventilation. A knowledge-based system approach. Comput Methods Programs Biomed 35(4):267–278

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Bundesministerium für Bildung und Forschung (Grant 1781X08 MOTiF-A), and Dräger Medical, Lübeck.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lozano-Zahonero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lozano-Zahonero, S., Gottlieb, D., Haberthür, C. et al. Automated mechanical ventilation: adapting decision making to different disease states. Med Biol Eng Comput 49, 349–358 (2011). https://doi.org/10.1007/s11517-010-0712-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0712-0

Keywords