Skip to main content

Advertisement

Log in

Numerical modeling of magnetic induction tomography using the impedance method

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

This article discusses the impedance method in the forward calculation in magnetic induction tomography (MIT). Magnetic field and eddy current distributions were obtained numerically for a sphere in the field of a coil and were compared with an analytical model. Additionally, numerical and experimental results for phase sensitivity in MIT were obtained and compared for a cylindrical object in a planar array of sensors. The results showed that the impedance method provides results that agree very well with reality in the frequency range from 100 kHz to 20 MHz and for low conductivity objects (10 S/m or less). This opens the possibility of using this numerical approach in image reconstruction in MIT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gabriel C, Gabriel S, Corthout E (1996) The dielectric properties of biological tissues: I literature survey. Phys Med Biol 41:2231–2249

    Article  CAS  PubMed  Google Scholar 

  2. Gencer NG, Nejat TM (1999) Electrical conductivity imaging via contactless measurements. IEEE Trans Med Imaging 18(7):617–627

    Article  CAS  PubMed  Google Scholar 

  3. Griffths H (2001) Magnetic induction tomography. Meas Sci Technol 12:1126–1131

    Article  Google Scholar 

  4. Hollaus K, Magele C, Merwa R, Scharfetter H (2004) Fast calculation of the sensitivity matrix in magnetic induction tomography by tetrahedral edge finite elements and the reciprocity theorem. Physiol Meas 25:159–168

    Article  CAS  PubMed  Google Scholar 

  5. Igney CH, Watson S, Williams RJ, Griffths H, Dossel O (2005) Design and performance of a planar array MIT system with normal sensor alignment. Physiol Meas 26:263–278

    Article  Google Scholar 

  6. Merwa R, Hollaus K, Biró O, Scharfetter H (2004) Detection brain oedema using magnetic induction tomography: a feasibility study of the likely sensitivity and detectability. Physiol Meas 25:347–354

    Article  PubMed  Google Scholar 

  7. Ming-Xin Q, Li-Cheng J, Hai-Bing W, Hua LV (2005) Simulation study of detecting conductivity of brain tissues with magnetic induction based on FDTD. In: Proceedings of IEEE engineering in medicine and biology, 27th annual conference, Shangai, China, pp 4369–4672

  8. Morris A, Griffths H, Cough W (2001) A numerical model for magnetic induction tomography measurements in biological tissues. Physiol Meas 22:113–119

    Article  CAS  PubMed  Google Scholar 

  9. Nadeem M, Thorleif T, Gandhi OP (2003) Computation of electric and magnetic stimulation in human head using the 3-D impedance method. IEEE Trans Biomed Eng 50:900–907

    Article  PubMed  Google Scholar 

  10. Orcutt N, Gandhi OP (1988) A 3-D impedance method to calculate power deposition in biological bodies subjected to time varying magnetic fields. IEEE Trans Biomed Eng 35:577–583

    Article  CAS  PubMed  Google Scholar 

  11. Orcutt N, Gandhi OP (1990) Use of the impedance method to calculate 3-D power deposition patterns for hyperthermia with capacitive plate electrodes. IEEE Trans Biomed Eng 37:6–43

    Article  Google Scholar 

  12. Pham MH, Peyton AJ (2008) A model for the forward problem in magnetic induction tomography using boundary integral equations. IEEE Trans Magn 44(10):2262–2267

    Article  Google Scholar 

  13. Ramos A, Raizer A, Marques JLB (2003) A new computational approach for electrical analysis of biological tissues. Bioelectrochemistry 59:73–84

    Article  CAS  PubMed  Google Scholar 

  14. Rossel-Ferrer J, Merwa R, Brunner P, Scharfetter H (2006) A multifrequency magnetic induction tomography system using planar gradiometers: data collection and calibration. Physiol Meas 27:271–280

    Article  Google Scholar 

  15. Soleimani M (2005) Image and shape reconstruction methods for electrical impedance and magnetic induction tomography. PhD Thesis, The University of Manchester, Manchester, United Kingdom

  16. Vauhkonen M, Hamsch M, Igney CH (2008) A measurement system and image reconstruction in magnetic induction tomography. Physiol Meas 29:445–454

    Article  Google Scholar 

  17. Watson S, Willians RJ, Cough W, Griffths H (2008) A magnetic induction tomography for samples with conductivities below 10 S/m. Meas Sci Technol 19:1–11

    Article  Google Scholar 

  18. Zolgharni M, Ledger PD, Armitage DW, Holder DS, Griffths H (2009) Imaging cerebral haemorrhage with magnetic induction tomography: numerical modeling. Physiol Meas 30:187–200

    Article  Google Scholar 

  19. Zolgharni M, Ledger PD, Griffths H (2009) Forward modeling of magnetic induction tomography: a sensitivity study for detecting haemorrhagic cerebral stroke. Med Biol Eng Comput 47:1301–1313

    Article  CAS  PubMed  Google Scholar 

  20. Zou Y, Guo Z (2003) A review of electrical impedance techniques for breast cancer detection. Med Eng Phys 25:79–90

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Airton Ramos.

Appendix

Appendix

Using the quasi-static approximations for Maxwell’s equations, Pham and Peyton [12] obtained the distribution of electric field inside and outside a spherical object near a circular coil concentric with the object. This field has only an azimuthal component. From this result, we calculate the current density inside the sphere using the relationship j = σEand the magnetic induction outside the sphere using Faraday’s Law B = (i/ω)∇ × E, where σ is the conductivity of the sphere. The current density is given by Eq. A.1:

$$ j_{\phi } (r,\theta ) = {\frac{\sigma \gamma }{{2\alpha a\sqrt {ar} }}}\sum\limits_{n = 1}^{\infty } {{\frac{2n + 1}{n(n + 1)}}{\frac{{I_{n + 0.5} (\alpha r)}}{{I_{n - 0.5} (\alpha r)}}}\left( {{\frac{a}{{r_{o} }}}} \right)^{n + 1} } P_{n}^{1} \left( {\cos \theta_{o} } \right)P_{n}^{1} (\cos \theta ) $$
(A.1)

where I n represents the modified Bessel functions of the first kind and P n are the associated Legendre functions of the first kind. The constants that appear in this equation are: the sphere radius a, the polar coordinates of the coil (r o , θ o ) in relation to the sphere center, the propagation constant \( \alpha = (1 + i)\sqrt {\omega \mu \sigma /2} \), and the constant \( \gamma = i\omega \mu I_{\text{s}} r_{o} sin\theta_{o} \).

The primary field (B pr and B pθ ) and secondary field (B sr and B sθ ) in radial and polar directions outside the sphere are given by Eqs. A.2A.5 below:

$$ B_{{{\text{p}}r}} = {\frac{ - i\gamma }{2\omega }}\sum\limits_{n = 1}^{\infty } {{\frac{{{{r^{n - 1} } \mathord{\left/ {\vphantom {{r^{n - 1} } {r_{o}^{n + 1} }}} \right. \kern-\nulldelimiterspace} {r_{o}^{n + 1} }}}}{n(n + 1)}}P_{n}^{1} \left( {\cos \theta_{o} } \right)} {\frac{d}{d(\cos \theta )}}\left[ {sin\theta P_{n}^{1} (\cos \theta )} \right] $$
(A.2)
$$ B_{{{\text{p}}\theta }} = {\frac{ - i\gamma }{2\omega }}\sum\limits_{n = 1}^{\infty } {\left[ {{\frac{{{{r^{n - 1} } \mathord{\left/ {\vphantom {{r^{n - 1} } {r_{o}^{n + 1} }}} \right. \kern-\nulldelimiterspace} {r_{o}^{n + 1} }}}}{n}}P_{n}^{1} \left( {\cos \theta_{o} } \right)P_{n}^{1} (\cos \theta )} \right]} $$
(A.3)
$$ \begin{aligned} B_{{{\text{s}}r}} & = {\frac{ - i\gamma }{2\omega }}\sum\limits_{n = 1}^{\infty } {{\frac{2n + 1}{n(n + 1)}}\left[ {{\frac{{I_{n + 0.5} (\alpha a)}}{{\alpha aI_{n - 0.5} (\alpha a)}}} - {\frac{1}{2n + 1}}} \right]} \\ {\frac{{\left( {{a \mathord{\left/ {\vphantom {a {r_{o} }}} \right. \kern-\nulldelimiterspace} {r_{o} }}} \right)^{n + 1} \left( {{a \mathord{\left/ {\vphantom {a r}} \right. \kern-\nulldelimiterspace} r}} \right)^{n} }}{{r^{2} }}}P_{n}^{1} \left( {\cos \theta_{o} } \right){\frac{d}{d(\cos \theta )}}\left[ {sin\theta P_{n}^{1} (\cos \theta )} \right] \\ \end{aligned} $$
(A.4)
$$ \begin{aligned} B_{{{\text{s}}\theta }} & = {\frac{ - i\gamma }{2\omega }}\sum\limits_{n = 1}^{\infty } {{\frac{2n + 1}{(n + 1)}}\left[ {{\frac{{I_{n + 0.5} (\alpha a)}}{{\alpha aI_{n - 0.5} (\alpha a)}}} - {\frac{1}{2n + 1}}} \right]} \\ {\frac{{\left( {{a \mathord{\left/ {\vphantom {a {r_{o} }}} \right. \kern-\nulldelimiterspace} {r_{o} }}} \right)^{n} \left( {{a \mathord{\left/ {\vphantom {a r}} \right. \kern-\nulldelimiterspace} r}} \right)^{n + 1} }}{{r \, r_{o} }}}P_{n}^{1} \left( {\cos \theta_{o} } \right)P_{n}^{1} (\cos \theta ) \\ \end{aligned} $$
(A.5)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramos, A., Wolff, J.G.B. Numerical modeling of magnetic induction tomography using the impedance method. Med Biol Eng Comput 49, 233–240 (2011). https://doi.org/10.1007/s11517-011-0733-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-011-0733-3

Keywords

Navigation