Skip to main content
Log in

3D network model of NO transport in tissue

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

We developed a mathematical model to simulate shear stress-dependent nitric oxide (NO) production and transport in a 3D microcirculatory network based on published data. The model consists of a 100 μm × 500 μm × 75 μm rectangular volume of tissue containing two arteriole-branching trees, and nine capillaries surrounding the vessels. Computed distributions for NO in blood, vascular walls, and surrounding tissue were affected by hematocrit (Hct) and wall shear stress (WSS) in the network. The model demonstrates that variations in the red blood cell (RBC) distribution and WSS in a branching network can have differential effects on computed NO concentrations due to NO consumption by RBCs and WSS-dependent changes in NO production. The model predicts heterogeneous distributions of WSS in the network. Vessel branches with unequal blood flow rates gave rise to a range of WSS values and therefore NO production rates. Despite increased NO production in a branch with higher blood flow and WSS, vascular wall NO was predicted to be lower due to greater NO consumption in blood, since the microvascular Hct increased with redistribution of RBCs at the vessel bifurcation. Within other regions, low WSS was combined with decreased NO consumption to enhance the NO concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ando J, Yamamoto K (2009) Vascular mechanobiology: endothelial cell responses to fluid shear stress. Circ J 73(11):1983–1992

    Article  PubMed  CAS  Google Scholar 

  2. Arciero JC, Carlson BE, Secomb TW (2008) Theoretical model of metabolic blood flow regulation: roles of ATP release by red blood cells and conducted responses. Am J Physiol Heart Circ Physiol 295(4):H1562–H1571

    Article  PubMed  CAS  Google Scholar 

  3. Bohlen HG (1998) Mechanism of increased vessel wall nitric oxide concentrations during intestinal absorption. Am J Physiol 275(2 Pt 2):H542–H550

    PubMed  CAS  Google Scholar 

  4. Buerk DG (2001) Can we model nitric oxide biotransport? A survey of mathematical models for a simple diatomic molecule with surprisingly complex biological activities. Annu Rev Biomed Eng 3:109–143

    Article  PubMed  CAS  Google Scholar 

  5. Buerk DG (2007) Nitric oxide regulation of microvascular oxygen. Antioxid Redox Signal 9(7):829–843

    Article  PubMed  CAS  Google Scholar 

  6. Buerk DG, Lamkin-Kennard K, Jaron D (2003) Modeling the influence of superoxide dismutase on superoxide and nitric oxide interactions, including reversible inhibition of oxygen consumption. Free Radic Biol Med 34(11):1488–1503

    Article  PubMed  CAS  Google Scholar 

  7. Butler AR, Megson IL, Wright PG (1998) Diffusion of nitric oxide and scavenging by blood in the vasculature. Biochim Biophys Acta 1425(1):168–176

    PubMed  CAS  Google Scholar 

  8. Carlsen E, Comroe JH (1958) The rate of uptake of carbon monoxide and of nitric oxide by normal human erythrocytes and experimentally produced spherocytes. J Gen Physiol 42(1):83–107

    Article  PubMed  CAS  Google Scholar 

  9. Carlson BE, Arciero JC, Secomb TW (2008) Theoretical model of blood flow autoregulation: roles of myogenic, shear-dependent, and metabolic responses. Am J Physiol Heart Circ Physiol 295(4):H1572–H1579

    Article  PubMed  CAS  Google Scholar 

  10. Carr RT, Lacoin M (2000) Nonlinear dynamics of microvascular blood flow. Ann Biomed Eng 28(6):641–652

    Article  PubMed  CAS  Google Scholar 

  11. Chen X, Buerk DG, Barbee KA, Jaron D (2007) A model of NO/O2 transport in capillary-perfused tissue containing an arteriole and venule pair. Ann Biomed Eng 35(4):517–529

    Article  PubMed  Google Scholar 

  12. Chen X, Jaron D, Barbee KA, Buerk DG (2006) The influence of radial RBC distribution, blood velocity profiles, and glycocalyx on coupled NO/O2 transport. J Appl Physiol 100(2):482–492

    Article  PubMed  CAS  Google Scholar 

  13. Chien S (2008) Effects of disturbed flow on endothelial cells. Ann Biomed Eng 36(4):554–562

    Article  PubMed  Google Scholar 

  14. Comerford A, Plank MJ, David T (2008) Endothelial nitric oxide synthase and calcium production in arterial geometries: an integrated fluid mechanics/cell model. J Biomech Eng 130(1):011010

    Article  PubMed  CAS  Google Scholar 

  15. Cornelissen AJ, Dankelman J, VanBavel E, Spaan JA (2002) Balance between myogenic, flow-dependent, and metabolic flow control in coronary arterial tree: a model study. Am J Physiol Heart Circ Physiol 282(6):H2224–H2237

    PubMed  CAS  Google Scholar 

  16. Davis MJ, Ferrer PN, Gore RW (1986) Vascular anatomy and hydrostatic pressure profile in the hamster cheek pouch. Am J Physiol 250(2 Pt 2):H291–H303

    PubMed  CAS  Google Scholar 

  17. Ellsworth ML, Pittman RN (1990) Arterioles supply oxygen to capillaries by diffusion as well as by convection. Am J Physiol 258(4 Pt 2):H1240–H1243

    PubMed  CAS  Google Scholar 

  18. Ellsworth ML, Popel AS, Pittman RN (1988) Assessment and impact of heterogeneities of convective oxygen transport parameters in capillaries of striated muscle: experimental and theoretical. Microvasc Res 35(3):341–362

    Article  PubMed  CAS  Google Scholar 

  19. Fung YC (1997) Biomechanics: circulation. New York, Springer-Verlag

    Google Scholar 

  20. Goldman D, Popel AS (2000) A computational study of the effect of capillary network anastomoses and tortuosity on oxygen transport. J Theor Biol 206(2):181–194

    Article  PubMed  CAS  Google Scholar 

  21. Hoogstraten HW, Kootstra JG, Hillen B, Krijger JK, Wensing PJ (1996) Numerical simulation of blood flow in an artery with two successive bends. J Biomech 29(8):1075–1083

    Article  PubMed  CAS  Google Scholar 

  22. House SD, Lipowsky HH (1987) Microvascular hematocrit and red cell flux in rat cremaster muscle. Am J Physiol 252(1 Pt 2):H211–H222

    PubMed  CAS  Google Scholar 

  23. Hudlicka O, Brown MD, May S, Zakrzewicz A, Pries AR (2006) Changes in capillary shear stress in skeletal muscles exposed to long-term activity: role of nitric oxide. Microcirculation 13(3):249–259

    Article  PubMed  CAS  Google Scholar 

  24. Jensen FB (2009) The dual roles of red blood cells in tissue oxygen delivery: oxygen carriers and regulators of local blood flow. J Exp Biol 212(Pt 21):3387–3393

    Article  PubMed  CAS  Google Scholar 

  25. Jou LD, van Tyen R, Berger SA, Saloner D (1996) Calculation of the magnetization distribution for fluid flow in curved vessels. Magn Reson Med 35(4):577–584

    Article  PubMed  CAS  Google Scholar 

  26. Kavdia M, Popel AS (2003) Wall shear stress differentially affects NO level in arterioles for volume expanders and Hb-based O2 carriers. Microvasc Res 66(1):49–58

    Article  PubMed  CAS  Google Scholar 

  27. Kavdia M, Popel AS (2006) Venular endothelium-derived NO can affect paired arteriole: a computational model. Am J Physiol Heart Circ Physiol 290(2):H716–H723

    Article  PubMed  CAS  Google Scholar 

  28. Kleinbongard P, Keymel S, Kelm M (2007) New functional aspects of the l-arginine-nitric oxide metabolism within the circulating blood. Thromb Haemost 98(5):970–974

    PubMed  CAS  Google Scholar 

  29. Kleinbongard P, Schulz R, Rassaf T, Lauer T, Dejam A, Jax T, Kumara I, Gharini P, Kabanova S, Ozuyaman B, Schnurch HG, Godecke A, Weber AA, Robenek M, Robenek H, Bloch W, Rosen P, Kelm M (2006) Red blood cells express a functional endothelial nitric oxide synthase. Blood 107(7):2943–2951

    Article  PubMed  CAS  Google Scholar 

  30. Kuchan MJ, Frangos JA (1994) Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am J Physiol 266(3 Pt 1):C628–C636

    PubMed  CAS  Google Scholar 

  31. Kuo L, Davis MJ, Chilian WM (1995) Longitudinal gradients for endothelium-dependent and -independent vascular responses in the coronary microcirculation. Circulation 92(3):518–525

    PubMed  CAS  Google Scholar 

  32. Lamkin-Kennard KA, Buerk DG, Jaron D (2004) Interactions between NO and O2 in the microcirculation: a mathematical analysis. Microvasc Res 68(1):38–50

    Article  PubMed  CAS  Google Scholar 

  33. Lamkin-Kennard KA, Jaron D, Buerk DG (2004) Impact of the Fahraeus effect on NO and O2 biotransport: a computer model. Microcirculation 11(4):337–349

    Article  PubMed  CAS  Google Scholar 

  34. Liao JC, Kuo L (1997) Interaction between adenosine and flow-induced dilation in coronary microvascular network. Am J Physiol 272(4 Pt 2):H1571–H1581

    PubMed  CAS  Google Scholar 

  35. Mashour GA, Boock RJ (1999) Effects of shear stress on nitric oxide levels of human cerebral endothelial cells cultured in an artificial capillary system. Brain Res 842(1):233–238

    Article  PubMed  CAS  Google Scholar 

  36. Michel T, Vanhoutte PM (2010) Cellular signaling and NO production. Pflugers Arch 459(6):807–816

    Article  PubMed  CAS  Google Scholar 

  37. Nase GP, Tuttle J, Bohlen HG (2003) Reduced perivascular PO2 increases nitric oxide release from endothelial cells. Am J Physiol Heart Circ Physiol 285(2):H507–H515

    PubMed  CAS  Google Scholar 

  38. Pries AR, Ley K, Claassen M, Gaehtgens P (1989) Red cell distribution at microvascular bifurcations. Microvasc Res 38(1):81–101

    Article  PubMed  CAS  Google Scholar 

  39. Pries AR, Secomb TW, Gaehtgens P (1990) Blood flow in microvascular networks. Experiments and simulation. Circ Res 67(4):826–834

    PubMed  CAS  Google Scholar 

  40. Pries AR, Secomb TW, Gaehtgens P, Gross JF (1994) Resistance to blood flow in microvessels in vivo. Circ Res 75(5):904–915

    PubMed  CAS  Google Scholar 

  41. Pries AR, Secomb TW, Gessner T, Sperandio MB, Gross JF, Gaehtgens P (1996) Biophysical aspects of blood flow in the microvasculature. Cardiovasc Res 32(4):654–667

    PubMed  CAS  Google Scholar 

  42. Reber KM, Mager GM, Miller CE, Nowicki PT (2001) Relationship between flow rate and NO production in postnatal mesenteric arteries. Am J Physiol Gastrointest Liver Physiol 280(1):G43–G50

    PubMed  CAS  Google Scholar 

  43. Sarelius IH, Damon DN, Duling BR (1981) Microvascular adaptations during maturation of striated muscle. Am J Physiol 241(3):H317–H324

    PubMed  CAS  Google Scholar 

  44. Secomb TW, Hsu R (1994) Simulation of O2 transport in skeletal muscle: diffusive exchange between arterioles and capillaries. Am J Physiol 267(3 Pt 2):H1214–H1221

    PubMed  CAS  Google Scholar 

  45. Sessa WC (2009) Molecular control of blood flow and angiogenesis: role of nitric oxide. J Thromb Haemost 7(Suppl 1):35–37

    Article  PubMed  CAS  Google Scholar 

  46. Thomas DD, Liu X, Kantrow SP, Lancaster JR Jr (2001) The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2. Proc Natl Acad Sci USA 98(1):355–360

    Article  PubMed  CAS  Google Scholar 

  47. Tsoukias NM (2008) Nitric oxide bioavailability in the microcirculation: insights from mathematical models. Microcirculation 15(8):813–834

    Article  PubMed  CAS  Google Scholar 

  48. Tsoukias NM, Popel AS (2003) A model of nitric oxide capillary exchange. Microcirculation 10(6):479–495

    PubMed  CAS  Google Scholar 

  49. van Faassen EE, Bahrami S, Feelisch M, Hogg N, Kelm M, Kim-Shapiro DB, Kozlov AV, Li H, Lundberg JO, Mason R, Nohl H, Rassaf T, Samouilov A, Slama-Schwok A, Shiva S, Vanin AF, Weitzberg E, Zweier J, Gladwin MT (2009) Nitrite as regulator of hypoxic signaling in mammalian physiology. Med Res Rev 29(5):683–741

    Article  PubMed  Google Scholar 

  50. Vaughn MW, Kuo L, Liao JC (1998) Effective diffusion distance of nitric oxide in the microcirculation. Am J Physiol 274(5 Pt):H1705–H1714

    PubMed  CAS  Google Scholar 

  51. Vaughn MW, Kuo L, Liao JC (1998) Estimation of nitric oxide production and reaction rates in tissue by use of a mathematical model. Am J Physiol 274(6 Pt 2):H2163–H2176

    PubMed  CAS  Google Scholar 

  52. Vukosavljevic N, Jaron D, Barbee KA, Buerk DG (2006) Quantifying the l-arginine paradox in vivo. Microvasc Res 71(1):48–54

    Article  PubMed  CAS  Google Scholar 

  53. Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S (1983) Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 53(4):502–514

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by HL 068164 from NIH and CBET 0730547 from NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dov Jaron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Buerk, D.G., Barbee, K.A. et al. 3D network model of NO transport in tissue. Med Biol Eng Comput 49, 633–647 (2011). https://doi.org/10.1007/s11517-011-0758-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-011-0758-7

Keywords

Navigation