Skip to main content
Log in

A novel method for recording neuronal depolarization with recording at 125–825 Hz: implications for imaging fast neural activity in the brain with electrical impedance tomography

  • Special Issue - Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Electrical impedance tomography (EIT) is a recently developed medical imaging method which has the potential to produce images of fast neuronal depolarization in the brain. Previous modelling suggested that applied current needed to be below 100 Hz but the signal-to-noise ratio (SNR) recorded with scalp electrodes during evoked responses was too low to permit imaging. A novel method in which contemporaneous evoked potentials are subtracted is presented with current applied at 225 Hz to cerebral cortex during evoked activity; although the signal is smaller than at DC by about 10×, the principal noise from the EEG is reduced by about 1000×, resulting in an improved SNR. It was validated with recording of compound action potentials in crab walking leg nerve where peak changes of −0.2% at 125 and 175 Hz tallied with biophysical modelling. In recording from rat cerebral cortex during somatosensory evoked responses, peak impedance decreases of −0.07 ± 0.006% (mean ± SE) with a SNR of >50 could be recorded at 225 Hz. This method provides a reproducible and artefact free means for recording resistance changes during neuronal activity which could form the basis for imaging fast neural activity in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baillet S, Riera JJ, Marin G, Mangin JF, Aubert J, Garnero L (2001) Evaluation of inverse methods and head models for EEG source localization using a human skull phantom. Phys Med Biol 46:77–96

    Article  PubMed  CAS  Google Scholar 

  2. Bleistein N, Cohen KJ (1977) Nonuniqueness in the inverse source problem in acoustics and electromagnetics. J Math Phys 18:194–201

    Article  Google Scholar 

  3. Boone KG (1995) The possible use of applied potential tomography for imaging action potentials in the brain. PhD thesis, University College London, London, UK

  4. Boone KG, Holder DS (1995) Design considerations and performance of a prototype system for imaging neuronal depolarization in the brain using ‘direct current’ electrical resistance tomography. Physiol Meas 16:A87–A98

    Article  PubMed  CAS  Google Scholar 

  5. Brown BH, Seagar AD (1987) The Sheffield data collection system. Clin Phys Physiol Meas 8(Suppl A):91–97

    Article  PubMed  Google Scholar 

  6. Calder′on AP (1980) On an inverse boundary value problem. In: Meyer WH, Raupp MA (eds) Seminar on numerical analysis and its applications to continuum physics. Brazilian Mathematical Society, Rio de Janeiro, pp 65–73

  7. Chemla S, Chavane F (2010) Voltage-sensitive dye imaging: technique review and models. J Physiol Paris 104:40–50

    Article  PubMed  CAS  Google Scholar 

  8. Cole SK, Curtis HJ (1939) Electrical Impedance of the squid giant axon during activity. J Gen Physiol 22:649–670

    Article  PubMed  CAS  Google Scholar 

  9. Dale AM, Halgren E (2001) Spatiotemporal mapping of brain activity by integration of multiple imaging modalities. Curr Opin Neurobiol 11:202–208

    Article  PubMed  CAS  Google Scholar 

  10. Fabrizi L, Sparkes M, Horesh L, Perez-Juste Abascal JF, McEwan A, Bayford RH, Elwes R, Binnie CD, Holder DS (2006) Factors limiting the application of electrical impedance tomography for identification of regional conductivity changes using scalp electrodes during epileptic seizures in humans. Physiol Meas 27:S163–S174

    Article  PubMed  CAS  Google Scholar 

  11. Fabrizi L, McEwan A, Oh T, Woo EJ, Holder DS (2009) A comparison of two EIT systems suitable for imaging impedance changes in epilepsy. Physiol Meas 30:S103–S120

    Article  PubMed  CAS  Google Scholar 

  12. Freygang WH, Landau WM (1955) Some relations between resistivity and electrical activity in the cerebral cortex of the cat. J Cell Physiol 45:377–392

    Article  PubMed  Google Scholar 

  13. Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251–2269

    Article  PubMed  CAS  Google Scholar 

  14. Galambos R, Velluti R (1968) Evoked resistance shifts in unanaesthetized cats. Exp Neurol 22:243–252

    Article  PubMed  CAS  Google Scholar 

  15. Gibson A, Dehghani H (2009) Diffuse optical imaging. Philos Trans A 367:3055–3072

    Article  Google Scholar 

  16. Gilad O, Holder DS (2009) Impedance changes recorded with scalp electrodes during visual evoked responses: implications for electrical impedance tomography of fast neural activity. Neuroimage 47:514–522

    Article  PubMed  CAS  Google Scholar 

  17. Gilad O, Horesh L, Holder DS (2007) Design of electrodes and current limits for low frequency electrical impedance tomography of the brain. Med Biol Eng Comput 7:621–633

    Article  Google Scholar 

  18. Gilad O, Ghosh A, Oh D, Holder DS (2009) A method for recording resistance changes non-invasively during neuronal depolarization with a view to imaging brain activity with electrical impedance tomography. J Neurosci Methods 180:87–96

    Article  PubMed  Google Scholar 

  19. Gilad O, Horesh L, Holder DS (2009) A modelling study to inform specification and optimal electrode placement for imaging of neuronal depolarization during visual evoked responses by electrical and magnetic detection impedance tomography. Physiol Meas 30:S201–S224

    Article  PubMed  CAS  Google Scholar 

  20. Hagberg GE, Bianciardi M, Maraviglia B (2006) Challenges for detection of neuronal currents by MRI. Magn Reson Imaging 24:483–493

    Article  PubMed  Google Scholar 

  21. Hamalainen MS, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497

    Article  CAS  Google Scholar 

  22. Holder DS (1987) Feasibility of developing a method of imaging neuronal activity in the human brain: a theoretical review. Med Biol Eng Comput 25:2–11

    Article  PubMed  CAS  Google Scholar 

  23. Holder DS (1989) Impedance changes during evoked nervous activity in human subjects: implications for the application of applied potential tomography (APT) to imaging neuronal discharge. Clin Phys Physiol Meas 10:267–274

    Article  PubMed  CAS  Google Scholar 

  24. Holder DS (1992) Detection of cerebral ischaemia in the anaesthetised rat by impedance measurement with scalp electrodes: implications for non-invasive imaging of stroke by electrical impedance tomography. Clin Phys Physiol Meas 13:63–75

    Article  PubMed  CAS  Google Scholar 

  25. Holder DS (1992) Impedance changes during the compound nerve action potential: implications for impedance imaging of neuronal depolarisation in the brain. Med Biol Eng Comput 30:140–146

    Article  PubMed  CAS  Google Scholar 

  26. Holder DS, Gardner-Medwin AR (1988) Some possible neurological applications of applied potential tomography. Clin Phys Physiol Meas 9(Suppl A):111–119

    Article  PubMed  Google Scholar 

  27. Homma R, Baker BJ, Jin L, Garaschuk O, Konnerth A, Cohen LB, Zecevic D (2009) Wide-field and two-photon imaging of brain activity with voltage- and calcium-sensitive dyes. Philos Trans R Soc Lond B 364:2453–2467

    Article  CAS  Google Scholar 

  28. Horesh L, Gilad O, Romsauerova A, McEwan A, Arridge SR, Holder DS (2005) Stroke type differentiation by multi-frequency electrical impedance tomography—a feasibility study. Proc 3rd Eur Med Biol Eng Conf: 1252–1256

  29. Isaacson D, Isaacson EL (1989) Comment on Calderon’s paper: “On an Inverse Boundary Value Problem”. Math Comput 52:553–559

    Google Scholar 

  30. Klivington KA, Galambos R (1967) Resistance shifts accompanying the evoked cortical response in the cat. Science 157:211–213

    Article  PubMed  CAS  Google Scholar 

  31. Klivington KA, Galambos R (1968) Rapid resistance shifts in cat cortex during click-evoked responses. J Neurophysiol 31:565–573

    PubMed  CAS  Google Scholar 

  32. Liston AD (2004) Models and image reconstruction in electrical impedance tomography of human brain function. PhD thesis, Middlesex University, London, UK

  33. McEwan A, Romsauerova A, Yerworth R, Horesh L, Bayford R, Holder D (2006) Design and calibration of a compact multi-frequency EIT system for acute stroke imaging. Physiol Meas 27:S199–S210

    Article  PubMed  CAS  Google Scholar 

  34. Metherall P, Barber DC, Smallwood RH, Brown BH (1996) Three-dimensional electrical impedance tomography. Nature 380:509–512

    Article  PubMed  CAS  Google Scholar 

  35. Parkes LM, de Lange FP, Fries P, Toni I, Norris DG (2007) Inability to directly detect magnetic field changes associated with neuronal activity. Magn Reson Med 57:411–416

    Article  PubMed  Google Scholar 

  36. Ranck JB Jr (1963) Analysis of specific impedance of rabbit cerebral cortex. Exp Neurol 7:153–174

    Article  PubMed  Google Scholar 

  37. Ranck JB Jr (1966) Electrical impedance in the subicular area of rats during paradoxical sleep. Exp Neurol 16:416–437

    Article  PubMed  Google Scholar 

  38. Romsauerova A, McEwan A, Horesh L, Yerworth R, Bayford RH, Holder DS (2006) Multi-frequency electrical impedance tomography (EIT) of the adult human head: initial findings in brain tumours, arteriovenous malformations and chronic stroke, development of an analysis method and calibration. Physiol Meas 27:S147–S161

    Article  PubMed  CAS  Google Scholar 

  39. Sadleir RJ, Grant SC, Woo EJ (2010) Can high-field MREIT be used to directly detect neural activity? Theoretical considerations. Neuroimage 52:205–216

    Article  PubMed  CAS  Google Scholar 

  40. Schuettler M, Ordonez JS, Henle C, Oh D, Gilad O, Holder DS (2008) A flexible 29 channel epicortical electrode array. In: 13th annual conference of the international FES society, Freiburg, Germany

  41. Tidswell AT, Gibson A, Bayford RH, Holder DS (2001) Three-dimensional electrical impedance tomography of human brain activity. NeuroImage 13:283–294

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The National Institutes of Health (NIH), US under Grant 5R01EB006597-03 from the National Institute of Biomedical Imaging and Bioengineering (NIBIB) and the National Eye Institute (NEI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Holder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, T., Gilad, O., Ghosh, A. et al. A novel method for recording neuronal depolarization with recording at 125–825 Hz: implications for imaging fast neural activity in the brain with electrical impedance tomography. Med Biol Eng Comput 49, 593–604 (2011). https://doi.org/10.1007/s11517-011-0761-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-011-0761-z

Keywords

Navigation