Skip to main content

Advertisement

Log in

Calibration of the mechanical properties in a finite element model of a lumbar vertebra under dynamic compression up to failure

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Finite element models (FEM) dedicated to vertebral fracture simulations rarely take into account the rate dependency of the bone material properties due to limited available data. This study aims to calibrate the mechanical properties of a vertebral body FEM using an inverse method based on experiments performed at slow and fast dynamic loading conditions. A detailed FEM of a human lumbar vertebral body (23,394 elements) was developed and tested under compression at 2,500 and 10 mm s−1. A central composite design was used to adjust the mechanical properties (Young modulus, yield stress, and yield strain) while optimizing four criteria (ultimate strain and stress of cortical and trabecular bone) until the failure load and energy at failure reached experimental results from the literature. At 2,500 mm s−1, results from the calibrated simulation were in good agreement with the average experimental data (1.5% difference for the failure load and 0.1% for the energy). At 10 mm s−1, they were in good agreement with the average experimental failure load (0.6% difference), and within one standard deviation of the reported range of energy to failure. The proposed method provides a relevant mean to identify the mechanical properties of the vertebral body in dynamic loadings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bosisio MR, Talmant M, Skalli W, Laugier P, Mitton D (2007) Apparent Young’s modulus of human radius using inverse finite-element method. J Biomech 40(9):2022–2028

    Article  PubMed  CAS  Google Scholar 

  2. Buckley JM, Loo K, Motherway J (2007) Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength. Bone 40(3):767–774

    Article  PubMed  Google Scholar 

  3. Burstein AH, Reilly DT, Martens M (1976) Aging of bone tissue: mechanical properties. J Bone Joint Surg Am 58(1):82–86

    PubMed  CAS  Google Scholar 

  4. Chevalier Y, Charlebois M, Pahr D, VArga P, Heini P, Schneider E, Zysset P (2008) A patient-specific finite element methodology to predict damage accumulation in vertebral bodies under axial compression, sagittal flexion and combined loads. Comput Methods Biomech Biomed Eng 11(5):477–487

    Article  Google Scholar 

  5. Crawford RP, Cann CE, Keaveny TM (2003) Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33(4):744–750

    Article  PubMed  Google Scholar 

  6. Edwards WT, Zheng Y, Ferrara LA, Yuan HA (2001) Structural features and thickness of the vertebral cortex in the thoracolumbar spine. Spine 26(2):218–225

    Article  PubMed  CAS  Google Scholar 

  7. El-Rich M, Arnoux PJ, Wagnac E, Brunet C, Aubin CE (2009) Finite element investigation of the loading rate effect on the spinal load-sharing changes under impact conditions. J Biomech 42(9):1252–1262

    Article  PubMed  Google Scholar 

  8. Eswaran SK, Gupta A, Keaveny TM (2007) Location of bone tissue at high risk of initial failure during compressive loading of a human vertebral body. Bone 41:733–739

    Article  PubMed  Google Scholar 

  9. Evans FG (1973) Factors affecting the mechanical properties of bone. Bull N Y Acad Med 49(9):751–764

    PubMed  CAS  Google Scholar 

  10. Faulkner KG, Cann CE, Hasegawa BH (1991) Effect of bone distribution on vertebral strength: assessment with patient-specific nonlinear finite element analysis. Radiology 179(3):669–674

    PubMed  CAS  Google Scholar 

  11. Ferguson SJ, Steffen T (2003) Biomechanics of the aging spine. Eur Spine J 12(2):S97–S103

    Article  PubMed  Google Scholar 

  12. Hansen U, Zioupos P, Simpson R, Currey JD, Hynd D (2008) The effect of strain rate on the mechanical properties of human cortical bone. J Biomech Eng 130(1):011011

    Article  PubMed  Google Scholar 

  13. Hongo M, Abe E, Shimada Y, Murai H, Ishikawa N, Sato K (1999) Surface strain distribution on thoracic and lumbar vertebrae under axial compression. The role in burst fracture. Spine 24:1197–1202

    Article  PubMed  CAS  Google Scholar 

  14. Jones AC, Wilcox RK (2008) Finite element analysis of the spine: towards a framework of verification, validation and sensitivity analysis. Med Eng Phys 30(10):1287–1304

    Article  PubMed  Google Scholar 

  15. Keaveny TM, Hayes WC (1993) A 20-year perspective on the mechanical properties of trabecular bone. J Biomech Eng 115(4B):534–542

    Article  PubMed  CAS  Google Scholar 

  16. Kopperdahl DL, Keaveny TM (1998) Yield strain behavior of trabecular bone. J Biomech 31(7):601–608

    Article  PubMed  CAS  Google Scholar 

  17. Liebschner MA, Kopperdahl DL, Rosenberg WS, Keaveny TM (2003) Finite element modeling of the human thoracolumbar spine. Spine 28(6):559–565

    PubMed  Google Scholar 

  18. Linde F, Nørgaard P, Hvid I, Odgaard A, Søballe K (1991) Mechanical properties of trabecular bone. Dependency on strain rate. J Biomech 24(9):803–809

    Article  PubMed  CAS  Google Scholar 

  19. McBroom RJ, Hayes WC, Edwards WT, Goldberg RP, White AA (1985) Prediction of vertebral body compressive fracture using quantitative computed tomography. J Bone Joint Surg Am 67(8):1206–1228

    PubMed  CAS  Google Scholar 

  20. McElhaney JH (1966) Dynamic response of bone and muscle tissue. J Appl Physiol 21(4):1231–1236

    PubMed  CAS  Google Scholar 

  21. Mirzaei M, Zeinali A, Razmjoo A, Nazemi M (2009) On prediction of the strength levels and failure patterns of human vertebrae using quantitative computed tomography (QCT)-based finite element method. J Biomech 42(11):1584–1591

    Article  PubMed  Google Scholar 

  22. Montgomery DC (2001) Design and analysis of experiment. Wiley, New York

    Google Scholar 

  23. Mosekilde L, Mosekilde L, Danielsen CC (1987) Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone 8(2):79–85

    Article  PubMed  CAS  Google Scholar 

  24. NIST/SEMATECH e-Handbook of Statistical Methods. http://www.itl.nist.gov/div898/handbook/. Accessed 2010

  25. Ochia RS, Tencer AF, Ching RP (2003) Effect of loading rate on endplate and vertebral body strength in human lumbar vertebrae. J Biomech 36(12):1875–1881

    Article  PubMed  Google Scholar 

  26. Odin G, Savoldelli C, Bouchard PO, Tillier Y (2010) Determination of Young’s modulus of mandibular bone using inverse analysis. Med Eng Phys 32:630–637

    Article  PubMed  Google Scholar 

  27. Qiu TX, Tan KW, Lee VS, Teo EC (2006) Investigation of thoracolumbar T12–L1 burst fracture mechanism using finite element method. Med Eng Phys 28(7):656–664

    Article  PubMed  Google Scholar 

  28. Reilly DT, Burstein AH (1974) Review article. The mechanical properties of cortical bone. J Bone Joint Surg Am 56(5):1001–1022

    PubMed  CAS  Google Scholar 

  29. Rockoff SD, Sweet E, Bleustein J (1969) The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res 3:163–175

    Article  PubMed  CAS  Google Scholar 

  30. Shim VPW, Yang LM, Liu JF, Lee VS (2005) Characterisation of the dynamic compressive mechanical properties of cancellous bone from the human cervical spine. Int J Impact Eng 32(1–4):525–540

    Article  Google Scholar 

  31. Silva MJ, Keaveny TM, Hayes WC (1997) Load sharing between the shell and centrum in the lumbar vertebral body. Spine 22(2):140–150

    Article  PubMed  CAS  Google Scholar 

  32. Stokes IA, Chegini S, Ferguson SJ, Gardner-Morse MG, Iatridis JC, Laible JP (2010) Limitation of finite element analysis of poroelastic behavior of biological tissues undergoing rapid loading. Ann Biomed Eng 38(5):1780–1788

    Article  PubMed  Google Scholar 

  33. Wall JC, Chatterji S, Jeffery JW (1970) On the origin of scatter in results of human bone strength tests. Med Biol Eng 8(2):171–180

    Article  PubMed  CAS  Google Scholar 

  34. Wilcox RK, Allen DJ, Hall RM, Limb D, Barton DC, Dickson RA (2004) A dynamic investigation of the burst fracture process using a combined experimental and finite element approach. Eur Spine J 13(6):481–488

    Article  PubMed  CAS  Google Scholar 

  35. Wirtz DC, Schiffers N, Pandorf T, Radermacher K, Weichert D, Forst R (2000) Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur. J Biomech 33(10):1325–1330

    Article  PubMed  CAS  Google Scholar 

  36. Yamada H (1970) Strength of biological materials. The Williams and Wilkins Company, Baltimore

    Google Scholar 

Download references

Acknowledgments

This research was funded by NSERC (Canada) and INRETS (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Jean Arnoux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garo, A., Arnoux, P.J., Wagnac, E. et al. Calibration of the mechanical properties in a finite element model of a lumbar vertebra under dynamic compression up to failure. Med Biol Eng Comput 49, 1371–1379 (2011). https://doi.org/10.1007/s11517-011-0826-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-011-0826-z

Keywords

Navigation