Skip to main content

Advertisement

Log in

QRS subtraction for atrial electrograms: flat, linear and spline interpolations

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The main objective of this article is to implement and compare QRS subtraction techniques for intra-cardiac atrial electrograms based on using the surface ECG as a reference. A band-pass filter between 8 and 20 Hz followed by rectification, and then a low-pass filter at 6 Hz are used for QRS detection. QRS subtraction was performed using three different approaches: flat, linear and spline interpolations. QRS subtraction affects the power of the signals but it normally does not affect the dominant frequency. The average power of the atrial electrograms after QRS subtraction is significantly reduced for frequencies above 10 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahmad A, Schlindwein FS, Ng GA (2010) Comparison of computation time for estimation of dominant frequency of atrial electrograms: fast fourier transform, Blackman Tukey, autoregressive and multiple signal classification. J Biomed Sci Eng (JBiSE) 3:843–847

    Article  Google Scholar 

  2. Anuradha B, Kumar KS, Reddy VCV (2008) Classification of cardiac signals using time domain methods. APRN J Eng Appl Sci 3(3):7–12

    Google Scholar 

  3. Berenfeld O (2007) Quantifying activation frequency in atrial fibrillation to establish underlying mechanism and ablation guidance. Heart Rhythm 4:1225–1234

    Article  PubMed  Google Scholar 

  4. Berenfeld O, Mandapati R, Dixit S et al (2000) Spatially distributed dominant excitation frequencies reveal hidden organization in atrial fibrillation in the Langendorff-perfused sheep heart. J Cardiovasc Electrophysiol Il:869–879

    Article  Google Scholar 

  5. Boardman A, Schlindwein FS, Thakor NV et al (2002) Detection of asphyxia using heart rate variability. Med Biol Eng Comput 40:618–624

    Article  PubMed  CAS  Google Scholar 

  6. Castells F, Mora C, RIeta JJ et al (2005) Estimation of atrial fibrillatory wave from single-lead atrial fibrillation electrocardiograms using principal component analysis concepts. Med Biol Eng Comput 43:557–560

    Article  PubMed  CAS  Google Scholar 

  7. Cooley J, Tukey O (1965) An algorithm for the machine calculation of complex Fourier series. Math Comput 19:297–301

    Article  Google Scholar 

  8. Greville T (1969) Theory and applications of spline functions. Academic Press Inc, New York

    Google Scholar 

  9. Husser D, Stridh M, Sornmo L et al (2004) Frequency analysis of atrial fibrillation from the surface electrocardiogram. Indian Pacing Electrophysiol J 4(3):122–136

    PubMed  Google Scholar 

  10. Kay SM, Marple SL (1981) Spectrum analysis—a modern perspective. Proc IEEE 69(11):1380–1419

    Article  Google Scholar 

  11. Lin Y-J, Higa S, Kao T et al (2007) Validation of the frequency spectra obtained from the noncontact unipolar electrograms during atrial fibrillation. J Cardiovasc Electrophysiol 18:1147–1153

    Article  PubMed  Google Scholar 

  12. Mandapati R, Skanes A, Chen J et al (2000) Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart. Circulation 101:194–199

    PubMed  CAS  Google Scholar 

  13. Mandapati R, Skanes A, Chen J et al (2000) Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart. Circulation 101:194–199

    PubMed  CAS  Google Scholar 

  14. Nademanee K, McKenzie J, Kosar E et al (2004) A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. J Am Col Cardiol 43(11):2044–2053

    Article  Google Scholar 

  15. Ng J, Goldberger JJ (2007) Understanding and interpreting dominant frequency analysis of AF electrograms. J Cardiovasc Electrophysiol 18:680–685

    Article  PubMed  Google Scholar 

  16. Okada M (1979) A digital filter for the QRS complex detection. IEEE Trans Biomed Eng BME 26(12):700–703

    Article  Google Scholar 

  17. Pan J, Willis Tompkins J (1985) A real-time QRS detection algorithm. IEEE Trans Biomed Eng BME-32(3):230–236

    Article  Google Scholar 

  18. Shah D, Yamane T, Choi K-J et al (2004) QRS subtraction and the ECG analysis of atrial ectopics. ANE 9(4):389–398

    PubMed  Google Scholar 

  19. Skanes AC, Mandapati R, Berenfeld O et al (1998) Spatiotemporal periodicity during atrial fibrillation in the isolated sheep heart. Circulation 98:1236–1248

    PubMed  CAS  Google Scholar 

  20. Slocum J, Byrom E, McCarthy L et al (1985) Computer detection of atrioventricular dissociation from surface electrocardiograms during wide QRS complex tachycardias. Circulation 72:1028–1036

    Article  PubMed  CAS  Google Scholar 

  21. Stridh M, Sörnmo L (2001) Spatiotemporal QRST cancellation techniques for analysis of atrial fibrillation. IEEE Trans Biomed Eng 48:1

    Article  Google Scholar 

  22. Thakor NV, John Webster G, Tompkins WJ (1984) Estimation of QRS complex power spectra for design of a QRS filter. IEEE Trans Biomed Eng BME-31(11):702–706

    Article  Google Scholar 

  23. Schumaker L (1993) Spline function: basic theory. Krieger Publishing Company, Malabar

    Google Scholar 

  24. Vaseghi SV (2008) Advanced digital signal processing and noise reduction, 3rd edn. Wiley, Chichester

    Book  Google Scholar 

  25. Vaya C, Rieta J (2007) ECG signal quantization effects in the analysis of atrial fibrillation. In: Computers in cardiology. Durham, NC, pp 477–480

  26. William JE, Thomson RE (2001) Data analysis methods in physical oceanography. Gulf Professional Publishing, Oxford

    Google Scholar 

Download references

Acknowledgements

The study described in this article is part of the research portfolio supported by the Leicester NIHR Biomedical Research Unit in Cardiovascular Disease. This research is also funded by the Ministry of Higher Education of Malaysia and Universiti Teknologi Malaysia. In addition, João Loures is supported by The National Council for Scientific and Technological Development (CNPq) of Brazil, process no. 200598/2009-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ahmad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, A., Salinet, J.L., Brown, P. et al. QRS subtraction for atrial electrograms: flat, linear and spline interpolations. Med Biol Eng Comput 49, 1321–1328 (2011). https://doi.org/10.1007/s11517-011-0829-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-011-0829-9

Keywords

Navigation