Skip to main content
Log in

Determination of electrode to nerve fiber distance and nerve conduction velocity through spectral analysis of the extracellular action potentials recorded from earthworm giant fibers

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Microneurography and the use of selective microelectrodes that can resolve single-unit nerve activity have become a tool to understand the coding within the nervous system and a clinical diagnostic tool to assess peripheral neural pathologies. Central to these techniques is the use of the differences in the shape of the extracellular action potential (AP) waveform to identify and discriminate units from one another. Theoretical modeling of the origins of these shape differences has shown that the position of the nerve fiber relative to the electrode and the conduction velocity of the unit contribute to these differences giving rise to the hypothesis that more information about the fiber and its relationship to the electrode could be extracted given further analysis of the AP waveform. This paper addresses this question by exploring the electrical coupling between the electrode and nerve fiber. Idealized models and the literature indicate that two parameters, the electrode–fiber distance and the unit conduction velocity, contribute to the amplitude of the extracellular AP detected by the electrode, which confounds the quantification of coupling using the spike amplitude alone. To resolve this, we develop a method that enables differential quantification of these two parameters using spectral analysis of the single-unit AP waveform and demonstrate that the two parameters could be effectively decoupled in an in vitro earthworm model. The method could open the way forward toward micro-scale in situ monitoring of the interaction of nerve fiber and neural interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

AP:

Action potential

ENG:

Electroneurogram

FFT:

Fast Fourier transform

LGF:

Lateral giant fiber

MGF:

Medial giant fiber

PSD:

Power spectral density

RMS:

Root-mean-square

StTA:

Stimulus-triggered average

SEM:

Standard error of the mean

SD:

Standard deviation

SNR:

Signal-to-noise ratio

VNC:

Ventral nerve cord

References

  1. Badia J, Boretius T, Udina E, Stieglitz T, Navarro X (2011) Biocompatibility of chronically implanted transverse intrafascicular multichannel electrode (TIME) in the rat sciatic nerve. IEEE Trans Biomed Eng 8:2324–2332

    Article  Google Scholar 

  2. Bullock TH (1945) Functional organization of the giant fiber system of Lumbricus. J Neurophysiol 8:55–71

    Google Scholar 

  3. Calancie BM, Stein RB (1988) Microneurography for the recording and selective stimulation of afferents: an assessment. Muscle Nerve 11:638–644

    Article  PubMed  CAS  Google Scholar 

  4. Cham JG, Branchaud EA, Nenadic Z, Greger B, Andersen RA, Burdick JW (2005) Semi-chronic motorized microdrive and control algorithm for autonomously isolating and maintaining optimal extracellular action potentials. J Neurophysiol 93:570–579

    Article  PubMed  Google Scholar 

  5. Dickey AS, Suminski A, Amit Y, Hatsopoulos NG (2009) Single-unit stability using chronically implanted multielectrode arrays. J Neurophysiol 102:1331–1339

    Article  PubMed  Google Scholar 

  6. Drake KL, Wise KD, Farraye J, Anderson DJ, BeMent SL (1988) Performance of planar multisite microprobes in recording extracellular single-unit intracortical activity. IEEE Trans Biomed Eng 35:719–732

    Article  PubMed  CAS  Google Scholar 

  7. Drewes CD, Landa KB, McFall JL (1978) Giant nerve fibre activity in intact, freely moving earthworms. J Exp Biol 72:217–227

    PubMed  CAS  Google Scholar 

  8. Ganapathy N, Clark JW Jr (1987) Extracellular currents and potentials of the active myelinated nerve fiber. Biophys J 52:749–761

    Article  PubMed  CAS  Google Scholar 

  9. Ganguly K, Carmena JM (2009) Emergence of a stable cortical map for neuroprosthetic control. PLoS Biol 7:e1000153

    Article  PubMed  Google Scholar 

  10. Gold C, Henze DA, Koch C, Buzsaki G (2006) On the origin of the extracellular action potential waveform: a modeling study. J Neurophysiol 95:3113–3128

    Article  PubMed  CAS  Google Scholar 

  11. Gross RE, Krack P, Rodriguez-Oroz MC, Rezai AR, Benabid AL (2006) Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson’s disease and tremor. Mov Disord 21(Suppl 14):S259–S283

    Article  PubMed  Google Scholar 

  12. Hoffer JA, Loeb GE, Pratt CA (1981) Single unit conduction velocities from averaged nerve cuff electrode records in freely moving cats. J Neurosci Methods 4:211–225

    Article  PubMed  CAS  Google Scholar 

  13. Jackson A, Fetz EE (2007) Compact movable microwire array for long-term chronic unit recording in cerebral cortex of primates. J Neurophysiol 98:3109–3118

    Article  PubMed  Google Scholar 

  14. Kipke DR, Shain W, Buzsaki G, Fetz E, Henderson JM, Hetke JF, Schalk G (2008) Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J Neurosci 28:11830–11838

    Article  PubMed  CAS  Google Scholar 

  15. Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J Optim 9:112–147

    Article  Google Scholar 

  16. Lago N, Yoshida K, Koch KP, Navarro X (2007) Assessment of biocompatibility of chronically implanted polyimide and platinum intrafascicular electrodes. IEEE Trans Biomed Eng 54:281–290

    Article  PubMed  Google Scholar 

  17. Lawrence SM, Larsen JO, Horch KW, Riso R, Sinkjaer T (2002) Long-term biocompatibility of implanted polymer-based intrafascicular electrodes. J Biomed Mater Res 63:501–506

    Article  PubMed  CAS  Google Scholar 

  18. Lefurge T, Goodall E, Horch K, Stensaas L, Schoenberg A (1991) Chronically implanted intrafascicular recording electrodes. Ann Biomed Eng 19:197–207

    Article  PubMed  CAS  Google Scholar 

  19. Lujan JL, Noecker AM, Butson CR, Cooper SE, Walter BL, Vitek JL, McIntyre CC (2009) Automated 3-dimensional brain atlas fitting to microelectrode recordings from deep brain stimulation surgeries. Stereotact Funct Neurosurg 87:229–240

    Article  PubMed  Google Scholar 

  20. Malmstrom JA, McNaughton TG, Horch KW (1998) Recording properties and biocompatibility of chronically implanted polymer-based intrafascicular electrodes. Ann Biomed Eng 26:1055–1064

    Article  PubMed  CAS  Google Scholar 

  21. Marmarelis PZ, Naka K (1972) White-noise analysis of a neuron chain: an application of the Wiener theory. Science 175:1276–1278

    Article  PubMed  CAS  Google Scholar 

  22. Mulloney B (1970) Structure of the giant fibers of earthworms. Science 168:994–996

    Article  PubMed  CAS  Google Scholar 

  23. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    Google Scholar 

  24. Nicolelis MA, Dimitrov D, Carmena JM, Crist R, Lehew G, Kralik JD, Wise SP (2003) Chronic, multisite, multielectrode recordings in macaque monkeys. Proc Natl Acad Sci USA 100:11041–11046

    Article  PubMed  CAS  Google Scholar 

  25. Plonsey R (1974) The active fiber in a volume conductor. IEEE Trans Biomed Eng 21:371–381

    Article  PubMed  CAS  Google Scholar 

  26. Qiao S, Yoshida K (2012) Influence of unit distance and conduction velocity on the spectra of extracellular action potentials recorded with intrafascicular electrodes. Med Eng Phys. doi:10.1016/j.medengphy.2012.04.008

  27. Rousche PJ, Normann RA (1998) Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex. J Neurosci Methods 82:1–15

    Article  PubMed  CAS  Google Scholar 

  28. Schoonhoven R, Stegeman DF (1991) Models and analysis of compound nerve action potentials. Crit Rev Biomed Eng 19:47–111

    PubMed  CAS  Google Scholar 

  29. Schoonhoven R, Stegeman DF, de Weerd JP (1986) The forward problem in electroneurography. I: a generalized volume conductor model. IEEE Trans Biomed Eng 33:327–334

    Article  PubMed  CAS  Google Scholar 

  30. Schwartz AB, Cui XT, Weber DJ, Moran DW (2006) Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 52:205–220

    Article  PubMed  CAS  Google Scholar 

  31. Stegeman DF, de Weerd JP, Eijkman EG (1979) A volume conductor study of compound action potentials of nerves in situ: the forward problem. Biol Cybern 33:97–111

    Article  PubMed  CAS  Google Scholar 

  32. Stein RB, Pearson KG (1971) Predicted amplitude and form of action potentials recorded from unmyelinated nerve fibres. J Theor Biol 32:539–558

    Article  PubMed  CAS  Google Scholar 

  33. Stephanova D, Trayanova N, Gydikov A, Kossev A (1989) Extracellular potentials of a single myelinated nerve fiber in an unbounded volume conductor. Biol Cybern 61:205–210

    Article  PubMed  CAS  Google Scholar 

  34. Struijk JJ (1997) The extracellular potential of a myelinated nerve fiber in an unbounded medium and in nerve cuff models. Biophys J 72:2457–2469

    Article  PubMed  CAS  Google Scholar 

  35. Struijk LN, Akay M, Struijk JJ (2008) The single nerve fiber action potential and the filter bank: a modeling approach. IEEE Trans Biomed Eng 55:372–375

    Article  PubMed  Google Scholar 

  36. Vetter RJ, Williams JC, Hetke JF, Nunamaker EA, Kipke DR (2004) Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex. IEEE Trans Biomed Eng 51:896–904

    Article  PubMed  Google Scholar 

  37. Vitek JL, Bakay RA, Hashimoto T, Kaneoke Y, Mewes K, Zhang JY, Rye D, Starr P, Baron M, Turner R, DeLong MR (1998) Microelectrode-guided pallidotomy: technical approach and its application in medically intractable Parkinson’s disease. J Neurosurg 88:1027–1043

    Article  PubMed  CAS  Google Scholar 

  38. Vitek JL, Delong MR, Starr PA, Hariz MI, Metman LV (2011) Intraoperative neurophysiology in DBS for dystonia. Mov Disord 26(Suppl 1):S31–S36

    Article  PubMed  Google Scholar 

  39. Welch PD (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15:70–73

    Article  Google Scholar 

  40. Wolf MT, Cham JG, Branchaud EA, Mulliken GH, Burdick JW, Andersen RA (2009) A robotic neural interface for autonomous positioning of extracellular recording electrodes. Int J Robot Res 28:1240–1256

    Article  Google Scholar 

  41. Yoshida K, Stein RB (1999) Characterization of signals and noise rejection with bipolar longitudinal intrafascicular electrodes. IEEE Trans Biomed Eng 46:226–234

    Article  PubMed  CAS  Google Scholar 

  42. Yoshida K, Struijk JJ (2004) The theory of peripheral nerve recording. In: Horch KW, Dhillon GS (eds) Neuroprosthetics: theory and practice. World Scientific Publishing Co Pte Ltd, Singapore, pp 342–428

    Chapter  Google Scholar 

  43. Yoshida K, Kurstjens GA, Hennings K (2009) Experimental validation of the nerve conduction velocity selective recording technique using a multi-contact cuff electrode. Med Eng Phys 31:1261–1270

    Article  PubMed  CAS  Google Scholar 

  44. Yoshida K, Farina D, Akay M, Jensen W (2010) Multichannel intraneural and intramuscular techniques for multiunit recording and use in active prostheses. Proc IEEE 98:432–449

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the BME Department Faculty Development Fund at Indiana University-Purdue University Indianapolis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoyu Qiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiao, S., Odoemene, O. & Yoshida, K. Determination of electrode to nerve fiber distance and nerve conduction velocity through spectral analysis of the extracellular action potentials recorded from earthworm giant fibers. Med Biol Eng Comput 50, 867–875 (2012). https://doi.org/10.1007/s11517-012-0930-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-0930-8

Keywords

Navigation