Skip to main content
Log in

Heart rate variability and nonlinear dynamic analysis in patients with stress-induced cardiomyopathy

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Complexity-based analyses may quantify abnormalities in heart rate variability (HRV). The aim of this study was to investigate the clinical and prognostic significances of dynamic HRV changes in patients with stress-induced cardiomyopathy Takotsubo syndrome (TS) by means of linear and nonlinear analysis. Patients with TS were included in study after complete noninvasive and invasive cardiovascular diagnostic evaluation and compared to an age and gender matched control group of healthy subjects. Series of R–R interval and of ST–T interval values were obtained from 24-h ECG recordings after digital sampling. HRV analysis was performed by ‘range rescaled analysis’ to determine the Hurst exponent, by detrended fluctuation analysis to quantify fractal long-range correlation properties, and by approximate entropy to assess time-series predictability. Short- and long-term fractal-scaling exponents were significantly higher in patients with TS in acute phases, opposite to lower approximate entropy and Hurst exponent, but all variables normalized in a few weeks. Dynamic HRV analysis allows assessing changes in complexity features of HRV in TS patients during the acute stage, and to monitor recovery after treatment, thus complementing traditional ECG and clinically analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bassingthwaighte JB, Raymond GM (1994) Evaluating rescaled range analysis for time series. Ann Biomed Eng 22(4):434–444

    Article  Google Scholar 

  2. Brouwer J, Van Veldhuisen DJ, Man in′t Veld AJ, Haaksma J, Dijk A, Visser KR, Boomsma F, Dunselman PHJM, Lie KI, and for the Dutch Ibopamine Multicentre Trial Study Group (1996) Prognostic value of heart rate variability during long-term follow-up in patients with mild to moderate heart failure. J Am Coll Cardiol 28:1183–1189

    Article  PubMed  CAS  Google Scholar 

  3. Castiglioni P, Parati G, Cividjian A, Quintin L, Di Rienzo M (2009) Local scale exponents of blood pressure and heart rate variability by detrended fluctuation analysis: effect of posture, exercise, and aging. IEEE Trans Biomed Eng 56(3):675–684

    Article  PubMed  Google Scholar 

  4. Castiglioni P, Parati G, Di Rienzo M, Carabalona R, Cividjian A, Quintin L (2011) Scale exponents of blood pressure and heart rate during autonomic blockade as assessed by detrended fluctuation analysis. J Physiol 589(2):355–369

    Article  PubMed  CAS  Google Scholar 

  5. Data Acquisition and Communication (2002) http:/www.iotech.com

  6. DePetrillo PB, Speers D, Ruttiman UE (1999) Determining the Hurst Exponent of fractal time series and its application to electrocardiographic analysis. Comput Biol Med 29:393–406

    Article  PubMed  CAS  Google Scholar 

  7. Derrick D (2009) The Broken Heart syndrome: understanding Takotsubo cardiomyopathy. Critical Care Nurse 29:49–57

    Article  PubMed  Google Scholar 

  8. Fischer R, Akay M (1996) A comparison of analytic methods for the study of fractional Brownian motion. Ann Biomed Eng 24:537–543

    Article  PubMed  CAS  Google Scholar 

  9. Glass L (1999) Chaos and heart rate variability. J Cardiovasc Electrophysiol 10:1358–1360

    Article  PubMed  CAS  Google Scholar 

  10. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23):215–220

    Article  Google Scholar 

  11. Goldberger AL (1996) Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at bedside. Lancet 347:1312–1314

    Article  PubMed  CAS  Google Scholar 

  12. Hausdorff JM, Peng CK, Ladin Z, Wei JY, Goldberger AL (1995) Is walking a random walk? Evidence for long-range correlations in the stride interval of human gait. J Appl Physiol 78:349–358

    PubMed  CAS  Google Scholar 

  13. Heitmann A, Huebner T, Schroeder R, Perz S, Voss A (2011) Multivariate short-term heart rate variability: a pre-diagnostic tool for screening heart disease. Med Biol Eng Comput. 49(1):41–50 PMID: 21140234

    Article  PubMed  Google Scholar 

  14. Huikuri HV (1995) Heart rate variability in coronary artery disease. J Intern Med 237:349–357

    Article  PubMed  CAS  Google Scholar 

  15. Huikuri HV, Makikallio TH, Perkiomaki J (2003) Measurement of heart rate variability by methods based on nonlinear dynamics. Electrocardiology 36(Suppl):95–99

    Article  Google Scholar 

  16. Knežević A, Martinis M, Krstačić G, Vargović E (2005) Changes in multifractal properties for stable angina pectoris. Physica A 358(2–4):505–515

    Google Scholar 

  17. Krstacic G (2002) Dissertation: non-linear dynamics in short time series in patient with stable coronary heart disease. Zagreb University School of Medicine, Zagreb

  18. Krstacic G, Krstacic A, Smalcelj A, Milicic D, Jembrek-Gostovic M (2007) The Chaos theory and non-linear dynamics in heart rate variability analysis: does it work in short time series in patients with coronary heart disease? Annals Noninvasive Electrocardiol 12(2):130–136

    Article  Google Scholar 

  19. Makikkalio TM, Ristimae T, Airaksinen AE, Peng CK, Goldberger AL, Huikuri HV (1998) Heart rate dynamics in patients with stable angina and utility of fractal and complexity measures. Am J Cardiol 81:27–31

    Article  Google Scholar 

  20. Makikallio TH, Hoiber S, Kober L, Torp-Pedersen C, Peng CK, Goldberger AL, Huikuri H, TRACE Investigators (1999) Fractal analysis of heart rate dynamics as a predictor of mortality in patients with depressed left ventricular function after acute myocardial infarction. Am J Cardiol 83:836–839

    Article  PubMed  CAS  Google Scholar 

  21. Martinis M, Knežević A, Krstačić G, Vargović E (2004) Changes in the Hurst exponent of heartbeat intervals during physical activity. Phys Rev E 70(1):12903

    Article  CAS  Google Scholar 

  22. Melillo P, Fusco R, Sansone M, Bracale M, Pecchia L (2011) Discrimination power of long-term heart rate variability measures for chronic heart failure detection. Med Biol Eng Comput. 49(1):67–74 PMID: 21203855

    Article  PubMed  Google Scholar 

  23. Novo S, Akashi Y, Arbustini A, Assennato P, Azzarelli S, Barbaro G, Fazio G, Fedele F, Giordan M, Mazzarotto P, Modena MG, Novo G, Parodi G, Rapezzi C, Sconci F, Sganzerla P, Tona F, Salerno-Uriarte JA (2008) Takotsubo cardiomyopathy: a consensus document. G Ital Cardiol 9:785–797

    Google Scholar 

  24. Novo S, Carità P, Fazio G, Novo G (2010) Takotsubo cardiomyopathy. An article from the E-Journal of the ESC council for cardiology practice. E-Journal 8(39), 05 July 2010

    Google Scholar 

  25. Orini M, Bailón R, Enk R, Koelsch S, Mainardi L, Laguna P (2010) A method for continuously assessing the autonomic response to music-induced emotions through HRV analysis. Med Biol Eng Comput 48(5):423–433

    Article  PubMed  Google Scholar 

  26. Ortak J, Khattab K, Barantke M, Wiegand UK, Bänsch D, Ince H, Nienaber CA, Bonnemeier H (2009) Evolution of cardiac autonomic nervous activity indices in patients presenting with transient left ventricular apical ballooning. Pacing Clin Electrophysiol 32(Suppl. 1):S21–S25

    Article  PubMed  Google Scholar 

  27. Pagani M, Montano N, Porta A, Malliani A, Abboud FM, Birkett C, Somers VK (1997) Relationship between spectral components of cardiovascular variability and direct measures of muscle sympathetic nerve activity in humans. Circulation 95:1441–1448

    Article  PubMed  CAS  Google Scholar 

  28. Parati G, Murray E (2012) The human sympathetic nervous system: its relevance in hypertension and heart failure. Eur Heart J 33:1058–1066

    Article  PubMed  CAS  Google Scholar 

  29. Parati G, Saul JP, Di Rienzo M, Mancia G (1995) Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation. A critical appraisal. Hypertension 25(6):276–286

    Article  Google Scholar 

  30. Peña MA, Echeverría JC, García MT, González-Camarena R (2009) Applying fractal analysis to short sets of heart rate variability data. Med Biol Eng Comput. 47(7):709–717

    Article  PubMed  Google Scholar 

  31. Peng CK, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5:82–87

    Article  PubMed  CAS  Google Scholar 

  32. Pincus SM, Viscarello RR (1992) Approximate entropy: a regularity statistic for fetal heart rate analysis. Obst Gynecol 79:249–255

    CAS  Google Scholar 

  33. Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA 88:2297–2301

    Article  PubMed  CAS  Google Scholar 

  34. Pincus SM, Huang WM (1992) Approximate entropy: statistical properties and applications. Commun Stat Theory Method 21:3061–3077

    Article  Google Scholar 

  35. Pincus SM, Goldberger AL (1994) Physiologic time-series analysis: what does regularity quantify? Am J Physiol 226:H1643–H1656

    Google Scholar 

  36. Regnante RA, Zuzek RW, Weinseir S, Latif SR, Linsky RA, Ahmed HN, Sadiq I (2009) Clinical characteristics and 4-year outcomes of patients in the Rhode Island Takostsubo cardiomyopathy. Am J Cardiol 103:1015–1019

    Article  PubMed  Google Scholar 

  37. Saul JP, Albrecht P, Berger RD, Cohen RJ (1987) Analysis of long-term heart rate variability: methods, 1/f scaling and implications. In: Computers in cardiology. Silver Spring. IEEE Computer Society Press, Baltimore, pp 419–422

  38. Saermark K, Moeller M, Hintze U, Moelgaard H, Bloch-Thomsen PE, Huikuri H, Makikallio T, Levitan J, Lewkowicz M (2000) Comparison of recent methods of analysing heart rate variability. Fractal 8:315–322

    Article  Google Scholar 

  39. Sharkey SW, Windenburg DC, Lesser JR, Maron MS, Hauser RG, Lesser JN, Haas TS, Hodges JS, Maron BJ (2010) Natural history and expansive clinical profile of stress (tako-tsubo) cardiomyopathy. J Am Coll Cardiol 55(4):333–341

    Article  PubMed  Google Scholar 

  40. Task Force Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93:1043–1065

    Article  Google Scholar 

  41. Wittstein IS, Thiemann DR, Lima JA, Baughman KL, Schulman SP, Gerstenblith G, Wu KC, Bivalacqua TJ, Champion HC (2005) Neurohormonal features of myocardial stunning due to sudden emotional stress. New Engl J Med 352:539–548

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goran Krstacic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krstacic, G., Parati, G., Gamberger, D. et al. Heart rate variability and nonlinear dynamic analysis in patients with stress-induced cardiomyopathy. Med Biol Eng Comput 50, 1037–1046 (2012). https://doi.org/10.1007/s11517-012-0947-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-0947-z

Keywords

Navigation