Skip to main content
Log in

In vitro electroretinogram for the study of the functionality of differentiated retinal pigment epithelium cells

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The purpose of this study is to develop and test a method to reveal if the retinal pigment epithelium (RPE) cells differentiated from human embryonic stem cells (hESC) support the functions of photoreceptors. hESC-derived RPE (hESC–RPE) cells offer a potent cell source for cell replacement therapy that may be used to prevent certain eye diseases. Methods to assure the functionality of the RPE cells are well warranted. Electroretinograms (ERG) measure the electrophysiological response of the retina to light stimuli. A setup was developed that enables the measurement of ERG in vitro from mice retinas cultured together with hESC–RPE cells. The co-culture of RPE and retinas seems to be a viable tool to assess the functionality of RPE in vitro. However, owing to limited sample size results were somewhat mixed, and thus it was not possible to prove that hESC–RPE cells enhance the ERG response of a mouse retina in vitro. The long-term culturing of the retinas needs to be refined to acquire more conclusive evidence of the supporting role of the RPE and to explore the full potential of the co-culture and ERG methods in assessing RPE functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Carr A-J, Vugler AA, Hikita ST, Lawrence JM, Gias C, Chen LL, Buchholz DE, Ahmado A, Semo M, Smart MJK, Hasan S, da Cruz L, Johnson LV, Clegg DO, Coffey PJ (2009) Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the Retinal Dystrophic Rat. Plos One 4(12):e8152

    Article  PubMed  Google Scholar 

  2. Coffey PJ, Girman S, Wang SM, Hetherington L, Keegan DJ, Adamson P, Greenwood J, Lund RD (2002) Long-term preservation of cortically dependent visual function in RCS rats by transplantation. Nat Neurosci 5:53–56

    Article  PubMed  CAS  Google Scholar 

  3. da Cruz L, Chen FK, Ahmado A, Greenwood J, Coffey P (2007) RPE transplantation and its role in retinal disease. Prog Retin Eye Res 26:598–635

    Article  PubMed  Google Scholar 

  4. Dunn KC, Aotaki-Keen AE, Putkey FR, Hjelmeland LM (1996) ARPE19, a human retinal pigment epithelial cell line with differentiated properties. Exp Eye Res 59:587–596

    Google Scholar 

  5. Eleftheriou CG, Zimmermann J, Kjeldsen H, Pur MD, Hanein Y, Serganor E (2012) Towards the development of carbon nanotube-based retinal implant technology: electrophysiological and ultrastructural evidence of coupling at the biohybrid interface. In: Stett A, Zeck G (eds) Proceedings of the 8th int. meeting on substrate-integrated microelectrode arrays. NMI Natural and Medical Sciences Institute, University of Tuebingen, Reutlingen, 2012

  6. Falkner-Radler C, Krebs I, Glittenberg C, Považay B, Drexler W, Graf A, Binder S (2011) Human retinal pigment epithelium (RPE) transplantation: outcome after autologous RPE-choroid sheet and RPE cell-suspension in a randomised clinical study. Br J Ophthalmol 95:370–375

    Article  PubMed  Google Scholar 

  7. Frambach DA, Fain GL, Farber DB, Bok D (1990) Beta adrenergic receptors on cultured human retinal pigment epithelium. Investig Ophthalmol Vis Sci 31:1767–1772

    CAS  Google Scholar 

  8. Haruta M, Sasai Y, Kawasaki H, Amemiya K, Ooto S, Kitada M, Suemori H, Nakatsuji N, Ide C, Honda Y, Takahashi M (2004) In vitro and in vivo characterization of pigment epithelial cells differentiated from primate embryonic stem cells. Investig Ophthalmol Vis Sci 45:1020–1025

    Article  Google Scholar 

  9. Idelson M, Alper R, Obolensky A, Ben-Shushan E, Hemo I, Yachimovich-Cohen N, Khaner H, Smith Y, Wiser O, Gropp M, Cohen MA, Even-Ram S, Berman-Zaken Y, Matzrafi L, Rechavi G, Banin E, Reubinoff B (2009) Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell 5:396–408

    Article  PubMed  CAS  Google Scholar 

  10. Johnson TV, Martin KR (2008) Development and characterization of an adult retinal explant organotypic tissue culture system as an in vitro intraocular stem cell transplantation model. Investig Ophthalmol Vis Sci 49:3503–3512

    Article  Google Scholar 

  11. Kaempf S, Walter P, Salz AK, Thumann G (2008) Novel organotypic culture model of adult mammalian neurosensory retina in co-culture with retinal pigment epithelium. J Neurosci Methods 173:47–58

    Article  PubMed  Google Scholar 

  12. Kaufman PL, Aml A (2003) Adler’s physiology of the eye—clinical application, 10th edn. Mosby, USA

    Google Scholar 

  13. Klimanskaya I, Hipp J, Rezai KA, West M, Atala A, Lanza R (2004) Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Clone Stem Cells 6:217–245

    CAS  Google Scholar 

  14. Kobuch K, Herrmann WA, Framme C, Sachs HG, Gabel V-P, Hillenkamp J (2008) Maintenance of adult porcine retina and retinal pigment epithelium in perfusion culture: characterisation of an organotypic in vitro model. Exp Eye Res 86:661–668

    Article  PubMed  CAS  Google Scholar 

  15. Lund D, Wang S, Klimanskaya I, Holmes T, Ramos-Kelsey R, Lu B, Girman S, Bischoff N, Sauvé Y, Lanza R (2006) Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Clone Stem Cells 8:189–199

    Article  CAS  Google Scholar 

  16. Maminishkis A, Chen S, Jalickee S, Banzon T, Shi G, Wang FE, Ehalt T, Hammer AJ, Miller SS (2006) Confluent monolayers of cultured human fetal retinal pigment epithelium exhibit morphology and physiology of native tissue. Investig Ophthalmol Vis Sci 47:3612–3624

    Article  Google Scholar 

  17. Mannermaa E, Reinisalo M, Ranta VP, Vellonen KS, Kokki H, Saarikko A, Kaarniranta K, Urtti A (2010) Filter-cultured ARPE-19 cells as outer blood-retinal barrier model. Eur J Pharm Sci 40:289–296

    Article  PubMed  CAS  Google Scholar 

  18. Monaim MA, Suleiman JH, Ashraf M (2005) Morphological recovery in the reattached retina of the toad Bufo marinus: a new experimental model of retinal detachment. Arch Med Res 36:107–112

    Article  Google Scholar 

  19. Nevala H, Ylikomi T, Tähti H (2008) Evaluation of the selected barrier properties of retinal pigment epithelial cell line ARPE-19 for an in vitro blood-barrier model. Hum Exp Toxicol 27:741–749

    Article  PubMed  CAS  Google Scholar 

  20. Nusinowitz S, Ridder WH, Heckenlively JR (2002) Electrophysiological testing of the mouse visual system. Systematic evaluation of the mouse eye: anatomy, pathology, and biomethods. Smith R (eds), CRC Press, Boca Raton

  21. Onnela N, Savolainen V, Juuti-Uusitalo K, Vaajasaari H, Skottman H, Hyttinen J (2011) Electric impedance of human embryonic stem cell derived retinal pigment epithelium. Med Biol Eng Comput 50:107–116

    Article  PubMed  Google Scholar 

  22. Rajasekaran SA, Hu J, Gopal J, Gallemore R, Ryazantsev S, Bok D, Rajasekaran AK (2003) Na, K-ATPase inhibition alters tight junction structure and permeability in human retinal pigment epithelial cells. Am J Physiol Cell Physiol 284:C1497–C1507

    PubMed  CAS  Google Scholar 

  23. Roth F, Bindewald A, Holz FG (2004) Key pathophysiologic pathways in age-related macular disease. Greafe’s Arch Clin Exp Ophthalmol 242:710–716

    Article  Google Scholar 

  24. Savolainen V, Juuti-Uusitalo K, Onnela N, Vaajasaari H, Narkilahti S, Suuronen R, Skottman H, Hyttinen J (2011) Impedance spectroscopy in monitoring the maturation of stem cell-derived retinal pigment epithelium. Ann Biom Eng 39:3055–3069

    Article  CAS  Google Scholar 

  25. Schwartz SD, Hubschman J-P, Heilwell G, Franco-Cardenas V, Pan CK, Otsrick RM, Mickunas E, Gay R, Klimanskaya I, Lanza R (2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379:713–720

    Article  PubMed  CAS  Google Scholar 

  26. Skottman H (2009) Derivation and characterization of three new human embryonic stem cell lines in Finland. In Vitro Cell Dev Biol Anim 46:206–209

    Article  Google Scholar 

  27. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881

    Article  PubMed  CAS  Google Scholar 

  28. Toimela T, Mäenpää H, Mannerström M, Tähti H (2004) Development of an in vitro blood-barrier model-cytotoxicity of mercury and aluminum. Toxicol Appl Pharmacol 195:73–82

    Article  PubMed  CAS  Google Scholar 

  29. Vaajasaari H, Ilmarinen T, Juuti-Uusitalo K, Rajala K, Onnela N, Narkilahti S, Suuronen R, Hyttinen J, Uusitalo H, Skottman H (2011) Towards defined and xeno-free differentiation of functional human pluripotent stem cell-derived retinal pigment epithelial cells. Mol Vis 17:558–575

    PubMed  CAS  Google Scholar 

  30. Wu J, Peachey NS, Marmorstein AD (2004) Light-evoked responses of the mouse retinal pigment epithelium. J Neurophysiol 91:1134–1142

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was financially supported by the Academy of Finland, the Finnish Cultural Foundation, Tampere University of Technology’s graduate school, the Emil Aaltonen Foundation, and BioneXt, Tampere. The authors thank the following: the group of Heli Skottman from the Institute of Biomedical Technology, Tampere University and BioMediTech for the kind gift of the hESC–RPE cells used in this study; Hannele Uusitalo-Järvinen for providing the authors with the mice used in this study; Mr. Raimo Peurakoski for his technical competence in the construction of the prototypes; and finally, Elina Konsén for her help with the medium preparations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niina Onnela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onnela, N., Lehtonen, L., Koski, M. et al. In vitro electroretinogram for the study of the functionality of differentiated retinal pigment epithelium cells. Med Biol Eng Comput 51, 61–70 (2013). https://doi.org/10.1007/s11517-012-0968-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-0968-7

Keywords

Navigation