Skip to main content
Log in

Estimation of impulse response between electromyogram signals for use in conduction delay distribution estimation

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The time delay between two surface electromyograms (EMGs) acquired along the conduction path is used to estimate mean action potential conduction velocity. Modeling the linear impulse response between “upstream” and “downstream” EMG signals permits an estimate of the distribution of velocities, providing more information. In this work, we analyzed EMG from bipolar electrodes placed on the tibialis anterior of 36 subjects, using an inter-electrode distance of 10 mm. Regularized least squares was used to fit the coefficients of a finite impulse response model. We trained the model on one recording, then tested on two others. The optimum correlation between the model-predicted and actual EMG averaged 0.70. We also compared estimation of the mean conduction delay from the peak time of the impulse response to the “gold standard” peak time of the cross-correlation between the upstream and downstream EMG signals. Optimal models differed from the gold standard by 0.02 ms, on average. Model performance was influenced by the regularization parameters. The impulse responses, however, incorrectly contained substantive power at very low time delays, causing delay distribution estimates to exhibit high probabilities at very short conduction delays. Unrealistic distribution estimates resulted. Larger inter-electrode spacing may be required to alleviate this limitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Blijham PJ, Hengstman GJD, Ter Laak HJ, Van Engelen BGM, Zwarts MJ (2004) Muscle-fiber conduction velocity and electromyography as diagnostic tools in patients with suspected inflammatory myopathy: a prospective study. Muscle Nerve 29:46–50

    Article  PubMed  Google Scholar 

  2. Blijham PJ, Ter Laak HJ, Schelhaas HJ, Van Engelen BGM, Stegeman DF, Zwarts MJ (2006) Relation between muscle fiber conduction velocity and fiber size in neuromuscular disorders. J Appl Physiol 100:1837–1841

    Article  PubMed  CAS  Google Scholar 

  3. Broman H, Bilotto G, DeLuca CJ (1985) A note on the noninvasive estimation of muscle fiber conduction velocity. IEEE Trans Biomed Eng 32:341–344

    Article  PubMed  CAS  Google Scholar 

  4. Chaffin DB (1973) Localized muscle fatigue—definition and measurement. J Occup Environ Med 15:346–354

    CAS  Google Scholar 

  5. Davies SW, Parker PA (1987) Estimation of myoelectric conduction velocity distribution. IEEE Trans Biomed Eng 34:365–374

    Article  PubMed  CAS  Google Scholar 

  6. Farina D, Merletti R (2003) A novel approach for estimating muscle fiber conduction velocity by spatial and temporal filtering of surface EMG signals. IEEE Trans Biomed Eng 50:1340–1351

    Article  PubMed  Google Scholar 

  7. Farina D, Merletti R (2004) Methods for estimating muscle fibre conduction velocity from surface electromyographic signals. Med Biol Eng Comput 42:432–445

    Article  PubMed  CAS  Google Scholar 

  8. Farina D, Mesin L (2005) Sensitivity of surface EMG-based conduction velocity estimates to local tissue in-homogeneities—influence of the number of channels and inter-channel distance. J Neurosci Meth 142:83–89

    Article  CAS  Google Scholar 

  9. Farina D, Negro F (2007) Estimation of muscle fiber conduction velocity with a spectral multidip approach. IEEE Trans Biomed Eng 54:1583–1589

    Article  PubMed  Google Scholar 

  10. Farina D, Fortunato E, Merletti R (2000) Noninvasive estimation of motor unit conduction velocity distribution using linear electrode arrays. IEEE Trans Biomed Eng 47:380–388

    Article  PubMed  CAS  Google Scholar 

  11. Farina D, Muhammad W, Fortunato E, Meste O, Merletti R, Rix H (2001) Estimation of single motor unit conduction velocity from surface electromyogram signals detected with linear electrode arrays. Med Biol Eng Comput 39:225–236

    Article  PubMed  CAS  Google Scholar 

  12. Farina D, Arendt-Nielsen L, Merletti R, Graven-Nielsen T (2002) Assessment of single motor unit conduction velocity during sustained contractions of the tibialis anterior muscle with advanced spike triggered averaging. J Neurosci Meth 115:1–12

    Article  Google Scholar 

  13. Farina D, Zagari D, Gazzoni M, Merletti R (2004) Reproducibility of muscle-fiber conduction velocity estimates using multichannel surface EMG techniques. Muscle Nerve 29:282–291

    Article  PubMed  Google Scholar 

  14. Gazzoni M, Farina D, Merletti R (2004) A new method for the extraction and classification of single motor unit action potentials from surface EMG signals. J Neurosci Meth 136:165–177

    Article  Google Scholar 

  15. Gydikov A (1981) Spreading of potentials along the muscle, investigated by averaging of the summated EMG. Electromyogr Clin Neurophysiol 21:525–538

    PubMed  CAS  Google Scholar 

  16. Hunter I, Kearney R (1983) Two-sided linear filter identification. Med Biol Eng Comput 21:203–209

    Article  PubMed  CAS  Google Scholar 

  17. Hunter I, Kearney R, Jones L (1987) Estimation of the conduction velocity of muscle action potentials using phase and impulse response function techniques. Med Biol Eng Comput 25:121–126

    Article  PubMed  CAS  Google Scholar 

  18. Lindstrom LH, Magnusson RI (1977) Interpretation of myoelectric power spectra: a model and its applications. Proc IEEE 65:653–662

    Article  Google Scholar 

  19. Lynn PA (1979) Direct on-line estimation of muscle fiber conduction velocity by surface electromyography. IEEE Trans Biomed Eng 26:564–571

    Article  PubMed  CAS  Google Scholar 

  20. Masuda T, Miyano H, Sadoyama T (1982) The measurement of muscle fiber conduction velocity using a gradient threshold zero-crossing method. IEEE Trans Biomed Eng 29:673–678

    Article  PubMed  CAS  Google Scholar 

  21. McIntosh KCD (2009) Reliability of muscle fibres conduction velocity in the tibialis anterior. M.S. thesis, Brock University, Ontario, Canada

  22. McIntosh K, Gabriel D (2012) Reliability of a simple method for determining muscle fiber conduction velocity. Muscle Nerve 45:257–265

    Article  PubMed  Google Scholar 

  23. Mesin L, Tizzani F, Farina D (2006) Estimation of motor unit conduction velocity from surface EMG recordings by signal-based selection of the spatial filters. IEEE Trans Biomed Eng 53:1963–1971

    Article  PubMed  Google Scholar 

  24. Naeije M, Zorn H (1982) Relation between EMG power spectrum shifts and muscle fibre action potential conduction velocity changes during local muscular fatigue in man. Eur J Appl Physiol 50:23–33

    Article  Google Scholar 

  25. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1994) Numerical recipes in C, 2nd edn. Cambridge University Press, New York, pp 671–681

    Google Scholar 

  26. Rababy N, Kearney R, Hunter I (1989) Method for EMG conduction velocity estimation which accounts for input and output noise. Med Biol Eng Comput 27:125–129

    Article  PubMed  CAS  Google Scholar 

  27. Schulte E, Farina D, Rau G, Merletti R, Disselhorst-Klug C (2003) Single motor unit analysis from spatially filtered surface electromyogram signals. Part 2: conduction velocity estimation. Med Biol Eng Comput 41:338–345

    Article  PubMed  CAS  Google Scholar 

  28. Viitasalo JHT, Komi PV (1977) Signal characteristics of EMG during fatigue. Eur J Appl Physiol 37:111–121

    Article  CAS  Google Scholar 

  29. Westwick DT, Kearney RE (1997) Identification of physiological systems: a robust method for non-parametric impulse response estimation. Med Biol Eng Comput 35:83–90

    Article  PubMed  CAS  Google Scholar 

  30. Williams WJ (1972) Transfer characteristics of dispersive nerve bundles. IEEE Trans Sys Man Cyber 2:72–85

    Google Scholar 

  31. Zwarts MJ, Stegeman DF (2003) Multichannel surface EMG: basic aspects and clinical utility. Muscle Nerve 28:1–17

    Article  PubMed  Google Scholar 

  32. Zwarts MJ, Van Weerden TW, Haenen HTM (1987) Relationship between average muscle fibre conduction velocity and EMG power spectra during isometric contraction, recovery and applied ischemia. Eur J Appl Physiol 56:212–216

    Article  CAS  Google Scholar 

  33. Zwarts MJ, Drost G, Stegeman DF (2000) Recent progress in the diagnostic use of surface EMG for neurological diseases. J Electromyogr Kinesiol 10:287–291

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward A. Clancy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassan, T., McIntosh, K.C.D., Gabriel, D.A. et al. Estimation of impulse response between electromyogram signals for use in conduction delay distribution estimation. Med Biol Eng Comput 51, 757–768 (2013). https://doi.org/10.1007/s11517-013-1042-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-013-1042-9

Keywords

Navigation