Skip to main content
Log in

In-silico modeling of atrial repolarization in normal and atrial fibrillation remodeled state

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Atrial fibrillation (AF) is the most common cardiac arrhythmia, and the total number of AF patients is constantly increasing. The mechanisms leading to and sustaining AF are not completely understood yet. Heterogeneities in atrial electrophysiology seem to play an important role in this context. Although some heterogeneities have been used in in-silico human atrial modeling studies, they have not been thoroughly investigated. In this study, the original electrophysiological (EP) models of Courtemanche et al., Nygren et al. and Maleckar et al. were adjusted to reproduce action potentials in 13 atrial regions. The parameter sets were validated against experimental action potential duration data and ECG data from patients with AV block. The use of the heterogeneous EP model led to a more synchronized repolarization sequence in a variety of 3D atrial anatomical models. Combination of the heterogeneous EP model with a model of persistent AF-remodeled electrophysiology led to a drastic change in cell electrophysiology. Simulated Ta-waves were significantly shorter under the remodeling. The heterogeneities in cell electrophysiology explain the previously observed Ta-wave effects. The results mark an important step toward the reliable simulation of the atrial repolarization sequence, give a deeper understanding of the mechanism of atrial repolarization and enable further clinical investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aslanidi OV, Boyett MR, Zhang H (2009) Left to right atrial electrophysiological differences: substrate for a dominant reentrant source during atrial fibrillation. Lect Notes Comput Sci 5528:154–161

    Article  Google Scholar 

  2. Aslanidi OV, Al-Owais M, Benson AP et al (2012) Virtual tissue engineering of the human atrium: modelling pharmacological actions on atrial arrhythmogenesis. Eur J Pharm Sci 46(4):209–221

    Google Scholar 

  3. Aslanidi OV, Colman MA, Stott J et al (2011) 3D virtual human atria: a computational platform for studying clinical atrial fibrillation. Prog Biophys Mol Biol 107:156–168

    Article  PubMed  Google Scholar 

  4. Bosch RF, Zeng X, Gramer JB et al (1999) Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovasc Res 44:121–131

    Article  PubMed  CAS  Google Scholar 

  5. Boyett MR, Honjo H, Yamamoto M et al (1999) Downward gradient in action potential duration along conduction path in and around the sinoatrial node. Am J Physiol 276:686

    Google Scholar 

  6. Burashnikov A, Mannava S, Antzelevitch C (2004) Transmembrane action potential heterogeneity in the canine isolated arterially perfused right atrium: effect of ikr and ikur/ito block. Am J Physiol Heart Circ Physiol 286:H2393–H2400

    Article  PubMed  CAS  Google Scholar 

  7. Caballero R, de la Fuente MG, Gomez R et al (2010) In humans, chronic atrial fibrillation decreases the transient outward current and ultrarapid component of the delayed rectifier current differentially on each atria and increases the slow component of the delayed rectifier current in both. J Am Coll Cardiol 55:2346–2354

    Article  PubMed  Google Scholar 

  8. Carlson J, Havmoller R, Herreros A et al (2005) Can orthogonal lead indicators of propensity to atrial fibrillation be accurately assessed from the 12-lead ecg?. Europace 7(Suppl 2):39–48

    Article  PubMed  Google Scholar 

  9. Cha TJ, Ehrlich JR, Zhang L et al (2005) Atrial tachycardia remodeling of pulmonary vein cardiomyocytes: comparison with left atrium and potential relation to arrhythmogenesis. Circulation 111:728–735

    Article  PubMed  Google Scholar 

  10. Childers RW, Merideth J, Moe GK (1968) Supernormality in Bachmann’s bundle an in vitro and in vivo study in the dog. Circ Res 22:363–370

    Article  PubMed  CAS  Google Scholar 

  11. Clayton RH, Bernus O, Cherry EM et al (2011) Models of cardiac tissue electrophysiology: progress, challenges and open questions. Prog Biophys Mol Biol 104:22–48

    Article  PubMed  CAS  Google Scholar 

  12. Courtemanche M, Ramirez RJ, Nattel S (1998) Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am J Physiol 275:H301–H321

    PubMed  CAS  Google Scholar 

  13. Debbas NM, Jackson SH, de Jonghe D et al (1999) Human atrial repolarization: effects of sinus rate, pacing and drugs on the surface electrocardiogram. J Am Coll Cardiol 33:358–365

    Article  PubMed  CAS  Google Scholar 

  14. Dössel O, Krueger MW, Weber FM et al (2012) Computational modeling of the human atrial anatomy and electrophysiology. Med Biol Eng Comput 50:773–799

    Article  PubMed  Google Scholar 

  15. Ehrlich JR, Cha TJ, Zhang L et al (2003) Cellular electrophysiology of canine pulmonary vein cardiomyocytes: action potential and ionic current properties. J Physiol 551:801–813

    Article  PubMed  CAS  Google Scholar 

  16. Feld GK, Mollerus M, Birgersdotter-Green U et al (1997) Conduction velocity in the tricuspid valve-inferior vena cava isthmus is slower in patients with type i atrial flutter compared to those without a history of atrial flutter. J Cardiovasc Electrophysiol 8:1338–1348

    Article  PubMed  CAS  Google Scholar 

  17. Feng J, Yue L, Wang Z et al (1998) Ionic mechanisms of regional action potential heterogeneity in the canine right atrium. Circ Res 83:541–551

    Article  PubMed  CAS  Google Scholar 

  18. Franz MR, Karasik PL, Li C et al (1997) Electrical remodeling of the human atrium: similar effects in patients with chronic atrial fibrillation and atrial flutter. J Am Coll Cardiol 30:1785–1792

    Article  PubMed  CAS  Google Scholar 

  19. Gelband H, Bush HL, Rosen MR et al (1972) Electrophysiologic properties of isolated preparations of human atrial myocardium. Circ Res 30:293–300

    Article  PubMed  CAS  Google Scholar 

  20. Gong D, Zhang Y, Cai B et al (2008) Characterization and comparison of Na+, K+ and Ca2+ currents between myocytes from human atrial right appendage and atrial septum. Cell Physiol Biochem 21:385–394

    Article  PubMed  CAS  Google Scholar 

  21. Grandi E, Pandit SV, Voigt N et al (2011) Human atrial action potential and Ca2+ model: sinus rhythm and chronic atrial fibrillation. Circ Res 109:1055–1066

    Article  PubMed  CAS  Google Scholar 

  22. Hayashi H, Okajima M, Yamada K (1976) Atrial T (Ta) wave and atrial gradient in patients with A-V block. Am Heart J 91:689–698

    Article  PubMed  CAS  Google Scholar 

  23. Henriquez CS (1993) Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit Rev Biomed Eng 21:1–77

    PubMed  CAS  Google Scholar 

  24. Holmqvist F, Carlson J, Platonov PG (2009) Detailed ECG analysis of atrial repolarization in humans. Ann Noninvasive Electrocardiol 14:13–18

    Article  PubMed  Google Scholar 

  25. Holmqvist F, Carlson J, Waktare JEP et al (2009) Noninvasive evidence of shortened atrial refractoriness during sinus rhythm in patients with paroxysmal atrial fibrillation. Pacing Clin Electrophysiol 32:302–307

    Article  PubMed  Google Scholar 

  26. Jacquemet V, Kappenberger L, Henriquez CS (2008) Modeling atrial arrhythmias: impact on clinical diagnosis and therapies. IEEE Rev Biomed Eng 1:94–114

    Article  PubMed  Google Scholar 

  27. Keller DUJ, Weber FM, Seemann G et al (2010) Ranking the influence of tissue conductivities on forward-calculated ECGs. IEEE Trans Biomed Eng 57:1568–1576

    Article  PubMed  Google Scholar 

  28. Koivumaeki JT, Korhonen T, Tavi P (2011) Impact of sarcoplasmic reticulum calcium release on calcium dynamics and action potential morphology in human atrial myocytes: a computational study. PLoS Comput Biol 7:e1001067

    Article  Google Scholar 

  29. Krueger MW, Schmidt V, Tobón C et al (2011) Modeling atrial fiber orientation in patient-specific geometries: a semi-automatic rule-based approach. In: Axel L, Metaxas D (eds) Functional imaging and modeling of the heart. Lecture Notes in Computer Science, vol 6666, pp 223–232

  30. Krueger MW, Severi S, Rhode K et al (2011) Alterations of atrial electrophysiology related to hemodialysis session: insights from a multiscale computer model. J Electrocardiol 44:176–183

    Article  PubMed  Google Scholar 

  31. Krueger MW, Seemann G, Rhode K et al (2013) Personalization of atrial anatomy and electrophysiology as a basis for clinical modeling of radio-frequency-ablation of atrial fibrillation. IEEE Trans Med Imaging 32(1):73–84

    Google Scholar 

  32. Kuo SR, Trayanova NA (2006) Action potential morphology heterogeneity in the atrium and its effect on atrial reentry: a two-dimensional and quasi-three-dimensional study. Philos Trans A Math Phys Eng Sci 364:1349–1366

    Article  PubMed  Google Scholar 

  33. Li D, Melnyk P, Feng J et al (2000) Effects of experimental heart failure on atrial cellular and ionic electrophysiology. Circulation 101:2631–2638

    Article  PubMed  CAS  Google Scholar 

  34. Li D, Zhang L, Kneller J et al (2001) Potential ionic mechanism for repolarization differences between canine right and left atrium. Circ Res 88:1168–1175

    Article  PubMed  CAS  Google Scholar 

  35. Li Z, Hertervig E, Kongstad O et al (2003) Global repolarization sequence of the right atrium: monophasic action potential mapping in health pigs. PACE 26:1803–1808

    Article  PubMed  Google Scholar 

  36. Luo CH, Rudy Y (1991) A model of the ventricular cardiac action potential. depolarization, repolarization, and their interaction. Circ Res 68:1501–1526

    Article  PubMed  CAS  Google Scholar 

  37. Maleckar MM, Greenstein JL, Giles WR et al (2009) K+ current changes account for the rate dependence of the action potential in the human atrial myocyte. Am J Physiol Heart Circ Physiol 297:H1398–410

    Article  PubMed  CAS  Google Scholar 

  38. Melnyk P, Ehrlich JR, Pourrier M et al (2005) Comparison of ion channel distribution and expression in cardiomyocytes of canine pulmonary veins versus left atrium. Cardiovasc Res 65:104–116

    Article  PubMed  CAS  Google Scholar 

  39. Nygren A, Fiset C, Firek L et al (1998) Mathematical model of a adult human atrial cell the role of k+ currents in repolarization. Circ Res 82:63–81

    Article  PubMed  CAS  Google Scholar 

  40. Potse M, Dubé B, Richter J et al (2006) A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans Biomed Eng 53:2425–2435

    Article  PubMed  Google Scholar 

  41. Qi A, Yeung-Lai-Wah JA, Xiao J et al (1994) Regional differences in rabbit atrial repolarization: importance of transient outward current. Am J Physiol 266:H643–H649

    PubMed  CAS  Google Scholar 

  42. Qu Z, Weiss JN, Garfinkel A (2000) From local to global spatiotemporal chaos in a cardiac tissue model. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 61:727–732

    Article  PubMed  CAS  Google Scholar 

  43. Rajamani S, Anderson CL, Valdivia CR et al (2006) Specific serine proteases selectively damage kcnh2 (herg1) potassium channels and i(kr). Am J Physiol Heart Circ Physiol 290:H1278–H1288

    Article  PubMed  CAS  Google Scholar 

  44. Ramirez RJ, Nattel S, Courtemanche M (2000) Mathematical analysis of canine atrial action potentials: rate, regional factors, and electrical remodeling. Am J Physiol Heart Circ Physiol 279:H1767–H1785

    PubMed  CAS  Google Scholar 

  45. Ridler ME, Lee M, McQueen D et al (2011) Arrhythmogenic consequences of action potential duration gradients in the atria. Can J Cardiol 27:112–119

    Article  PubMed  Google Scholar 

  46. Seemann G, Höper C, Sachse FB et al (2006) Heterogeneous three-dimensional anatomical and electrophysiological model of human atria. Philos Trans R Soc A 364:1465–1481

    Article  CAS  Google Scholar 

  47. Seemann G, Carrillo Bustamante P, Ponto S et al (2010) Atrial fibrillation-based electrical remodeling in a computer model of the human atrium. In: Proceedings of computing in cardiology, vol 37, pp 417–420

  48. Seemann G, Sachse FB, Karl M et al (2010) Framework for modular, flexible and efficient solving the cardiac bidomain equation using petsc. Math Ind 15:363–369

    Article  Google Scholar 

  49. SippensGroenewegen A, Peeters HA, Jessurun ERet al (1998) Body surface mapping during pacing at multiple sites in the human atrium: P-wave morphology of ectopic right atrial activation. Circulation 97:369–380

    Article  PubMed  CAS  Google Scholar 

  50. Tobon C, Ruiz C, Rodriguez JF et al (2010) Vulnerability for reentry in a three dimensional model of human atria: a simulation study. In: Conference proceedings of IEEE engineering in medicine and biology society 2010, pp 224–227

  51. van der Velden HM, Ausma J, Rook MB et al (2000) Gap junctional remodeling in relation to stabilization of atrial fibrillation in the goat. Cardiovasc Res 46:476–486

    Article  PubMed  Google Scholar 

  52. van Oosterom A, Jacquemet V (2005) Genesis of the p wave: atrial signals as generated by the equivalent double layer source model. Europace 7(Suppl 2):21–29

    Article  PubMed  Google Scholar 

  53. Voigt N, Trausch A, Knaut M et al (2010) Left-to-right atrial inward rectifier potassium current gradients in patients with paroxysmal versus chronic atrial fibrillation. Circ Arrhythm Electrophysiol 3:472–480

    Article  PubMed  Google Scholar 

  54. Wang Z, Feng J, Shi H et al (1999) Potential molecular basis of different physiological properties of the transient outward k+ current in rabbit and human atrial myocytes. Circ Res 84:551–561

    Article  PubMed  CAS  Google Scholar 

  55. Weber FM, Luik A, Schilling C et al (2011) Conduction velocity restitution of the human atrium—an efficient measurement protocol for clinical electrophysiological studies. IEEE Trans Biomed Eng 58:2648–2655

    Article  PubMed  Google Scholar 

  56. Wilhelm M, Kirste W, Kuly S et al (2006) Atrial distribution of connexin 40 and 43 in patients with intermittent, persistent, and postoperative atrial fibrillation. Heart Lung Circ 15:30–37

    Article  PubMed  CAS  Google Scholar 

  57. Wilhelms M, Hettmann H, Maleckar MMC et al (2013) Benchmarking electrophysiological models of human atrial myocytes. Front Phys 3(487):1–16. doi:10.3389/fphys.2012.00487

    Google Scholar 

  58. Yu WC, Lee SH, Tai CT et al (1999) Reversal of atrial electrical remodeling following cardioversion of long-standing atrial fibrillation in man. Cardiovasc Res 42:470–476

    Article  PubMed  CAS  Google Scholar 

  59. Yue LX, Feng J, Li GR et al (1996) Transient outward and delayed rectifier currents in canine atrium: properties and role of isolation methods. Am J Physiol Heart Circ Physiol 270:H2157–H2168

    CAS  Google Scholar 

  60. Zhao J, Trew ML, Legrice IJ et al (2009) A tissue-specific model of reentry in the right atrial appendage. J Cardiovasc Electrophysiol 20:675–684

    Article  PubMed  Google Scholar 

  61. Zhao J, Butters TD, Zhang H et al (2012) An image-based model of atrial muscular architecture: effects of structural anisotropy on electrical activation. Circ Arrhythm Electrophysiol 5:361–370

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mathias Wilhelms for the extraction of restitution curves from the literature. The research leading to these results has received funding from the European Communitys Seventh Framework Programme (FP7/2007-2013) under grant agreement no 224495 (euHeart project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin W. Krueger.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krueger, M.W., Dorn, A., Keller, D.U.J. et al. In-silico modeling of atrial repolarization in normal and atrial fibrillation remodeled state. Med Biol Eng Comput 51, 1105–1119 (2013). https://doi.org/10.1007/s11517-013-1090-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-013-1090-1

Keywords

Navigation