Skip to main content

Advertisement

Log in

Frequency range extension of spectral analysis of pulse rate variability based on Hilbert–Huang transform

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Heart rate variability (HRV) is a well-accepted indicator for neural regulatory mechanisms in cardiovascular circulation. Its spectrum analysis provides the powerful means of observing the modulation between sympathetic and parasympathetic nervous system. The timescale of HRV is limited by discrete beat-to-beat time intervals; therefore, the exploration region of frequency band of HRV spectrum is relatively narrow. It had been proved that pulse rate variability (PRV) is a surrogate measurement of HRV in most of the circumstances. Moreover, arterial pulse wave contains small oscillations resulting from complex regulation of cardiac pumping function and vascular tone at higher frequency range. This study proposed a novel instantaneous PRV (iPRV) measurement based on Hilbert–Huang transform. Fifteen healthy subjects participated in this study and received continuous blood pressure wave recording in supine and passive head-up tilt. The result showed that the very-high-frequency band (0.4–0.9 Hz) varied during head-up tilt and had strong correlation (r = 0.77) with high-frequency band and medium correlation (r = 0.643) with baroreflex sensitivity. The very-high-frequency band of iPRV helps for the exploration of non-stationary autoregulation and provides the non-stationary spectral evaluation of HRV without distortion or information loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

HR:

Heart rate

RRi:

Beat-to-beat interval

ECG:

Electrocardiogram

HRV:

HR variability

ANS:

Autonomic nervous system

SNS:

Sympathetic nervous system

PNS:

Parasympathetic nervous system

FFT:

Fast Fourier transform

LF:

Low frequency

HF:

High frequency

PRV:

Pulse rate variability

HHT:

Hilbert–Huang transform

EMD:

Empirical mode decomposition

IMFs:

Intrinsic mode functions

EEMD:

Ensemble EMD

CEEMD:

Complementary EEMD

ABP:

Arterial blood pressure

IF:

Instantaneous frequency

HT:

Hilbert transform

NHT:

Normalized HT

iPRV:

Instantaneous PRV

EtCO2 :

End-tidal CO2

HUT:

Head-up tilt

FM:

Frequency modulation

iPR:

Instantaneous PR

LH ratio:

Low–high ratio

References

  1. Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213:220–222

    Article  CAS  PubMed  Google Scholar 

  2. Babaeizadeh S, Zhou SH, Liu X, Hu WY, Feild DQ, Helfenbein ED, Gregg RE, Lindauer JM (2007) A novel heart rate variability index for evaluation of left ventricular function using five-minute electrocardiogram. Comput Cardiol 34:473–476

    Google Scholar 

  3. Bailón R, Mateo J, Olmos S, Serrano P, García J, del Río A, Ferreira IJ, Laguna P (2003) Coronary artery disease diagnosis based on exercise electrocardiogram indexes from repolarisation, depolarisation and heart rate variability. Med Biol Eng Comput 41:561–571

    Article  PubMed  Google Scholar 

  4. Balocchi R, Menicucci D, Santarcangelo E, Sebastiani L, Gemignani A, Ghelarducci B, Varanini M (2004) Derive the respiratory sinus arrhythmia from the heartbeat time series using empirical mode decomposition. Chaos Solitons Fractals 20:171–177

    Article  Google Scholar 

  5. Berntson GG, Bigger Jr JT, Eckberg DL, Grossman P, Kaufmann PG, Malik M, Nagaraja HN, Porges SW, Saul JP, Stone PH, van der Molen MW (1997) Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology 34:623–648

    Article  CAS  PubMed  Google Scholar 

  6. Chang CC, Hsu HY, Hsiao TC (2013) Quantitative non-stationary assessment of cerebral hemodynamics by empirical mode decomposition of cerebral Doppler flow velocity. Adv Adapt Data Anal 5:1350002. doi:10.1142/S1793536913500027

    Article  Google Scholar 

  7. de Souza Neto EP, Abry P, Loiseau P, Cejka JC, Custaud MA, Frutoso J, Gharib C, Flandrin P (2007) Empirical mode decomposition to assess cardiovascular autonomic control in rats. Fundam Clin Pharmacol 21:481–496

    Article  CAS  PubMed  Google Scholar 

  8. Flandrin P, Rilling G, Goncalves P (2004) Empirical mode decomposition as a filter bank. IEEE Signal Process Lett 11:112–114

    Article  Google Scholar 

  9. Gil E, Orini M, Bailon R, Vergara JM, Mainardi L, Laguna P (2010) Photoplethysmography pulse rate variability as a surrogate measurement of heart rate variability during non-stationary conditions. Physiol Meas 31:1271–1290

    Article  CAS  PubMed  Google Scholar 

  10. Højgaard MV, Holstein-Rathlou NH, Agner E, Kanters JK (2005) Reproducibility of heart rate variability, blood pressure variability and baroreceptor sensitivity during rest and head-up tilt. Blood Press Monit 10:19–24

    Article  PubMed  Google Scholar 

  11. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc R Soc Lond A 454:903–995

    Article  Google Scholar 

  12. Huang NE, Wu Z, Long SR, Amold KC, Chen X, Blank K (2009) On instantaneous frequency. Adv Adapt Data Anal 1:177–229

    Article  Google Scholar 

  13. Hughson RL, Quintin L, Annat G, Yamamoto Y, Gharib C (1993) Spontaneous baroreflex by sequence and power spectral methods in humans. Clin Physiol 13:663–676

    Article  CAS  PubMed  Google Scholar 

  14. Kamath MV, Fallen EL (1993) Power spectral analysis of heart rate variability: a noninvasive signature of cardiac autonomic function. Crit Rev Biomed Eng 21:245–311

    CAS  PubMed  Google Scholar 

  15. La Rovere MT, Pinna GD, Raczak G (2008) Baroreflex sensitivity: measurement and clinical implications. Ann Noninvasive Electrocardiol 13:191–207

    Article  PubMed  Google Scholar 

  16. Li H, Kwong S, Yang L, Huang D, Xiao D (2011) Hilbert–Huang transform for analysis of heart rate variability in cardiac health. IEEE/ACM Trans Comput Biol Bioinform 8:1557–1567

    Article  PubMed  Google Scholar 

  17. Lo MT, Hu K, Liu Y, Peng CK, Novak V (2008) Multimodal pressure flow analysis: application of Hilbert–Huang transform in cerebral blood flow regulation. EURASIP J Adv Signal Process 2008:785243

    Article  PubMed Central  PubMed  Google Scholar 

  18. Ponomarenko VI, Prokhorov MD, Bespyatov AB, Bodrov MB, Gridnev VI (2005) Deriving main rhythms of the human cardiovascular system from the heartbeat time series and detecting their synchronization. Chaos Solitons Fractals 23:1429–1438

    Article  Google Scholar 

  19. Rajendra Acharya U, Paul Joseph K, Kannathal N, Lim CM, Suri JS (2006) Heart rate variability: a review. Med Biol Eng Comput 44:1031–1051

    Article  CAS  PubMed  Google Scholar 

  20. Rilling G, Flandrin P, Gonçalvès P (2003) On empirical mode decomposition and its algorithm. In: Proceedings of the 6th IEEE/EURASIP workshop on nonlinear signal and image processing (NSIP’03), Grado, Italy, June 8–11

  21. Task force of the European society of cardiology and the north american society of pacing and electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93:1043–1065

    Article  Google Scholar 

  22. von Ballmoos MW, Takala J, Roeck M, Porta F, Tueller D, Ganter CC, Schröder R, Bracht H, Baenziger B, Jakob SM (2010) Pulse-pressure variation and hemodynamic response in patients with elevated pulmonary artery pressure: a clinical study. Crit Care 14:P111

    Article  Google Scholar 

  23. MC Wu, CK Hu (2006) Empirical mode decomposition and synchrogram approach to cardiorespiratory synchronization. Phys Rev E Stat Nonlinear Soft Matter Phys 73:051917

    Google Scholar 

  24. Wu MC, Huang NE (2009) Biomedical data processing using HHT: a review. Adv Biosignal Process Amine NAIT-ALI Ed. Chapter 19 Springer 335–352

  25. Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise assisted data analysis method. Adv Adapt Data Anal 1:1–42

    Article  Google Scholar 

  26. Wu HT, Lee CH, Liu AB, Chung WS, Tang CJ, Sun CK, Yip HK (2011) Arterial stiffness using radial arterial waveforms measured at the wrist as an indicator of diabetic control in the elderly. IEEE Trans Biomed Eng 58:243–252

    Article  PubMed  Google Scholar 

  27. Yang Z, Yang L, Qing C (2010) An oblique-extrema-based approach for empirical mode decomposition. Digit Signal Proc 20:699–714

    Article  Google Scholar 

  28. Yeh JR, Sun WZ, Shieh JS, Huang NE (2010) Investigating fractal property and respiratory modulation of human heartbeat time series using empirical mode decomposition. Med Eng Phys 32:490–496

    Article  PubMed  Google Scholar 

  29. Yeh JR, Shieh JS, Huang NE (2010) Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method. Adv Adapt Data Anal 2:243–252

    Article  Google Scholar 

Download references

Acknowledgments

Research supported by Taiwan National Science Council under Grant Number: NSC 100-2314-B-040-003, NSC-102-2220-E-009-001, NSC-102-2220-E-009-023 and NSC-102-2627-E-010-001 and in part by “Aim for the Top University Plan” of the National Chiao Tung University and Ministry of Education, Taiwan, R.O.C. This work was also supported in part by the UST-UCSD International Center of Excellence in Advanced Bioengineering sponsored by the Taiwan National Science Council I-RiCE Program under Grant Number: NSC-101-2911-I-009-101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung-Yi Hsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, CC., Hsiao, TC. & Hsu, HY. Frequency range extension of spectral analysis of pulse rate variability based on Hilbert–Huang transform. Med Biol Eng Comput 52, 343–351 (2014). https://doi.org/10.1007/s11517-013-1135-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-013-1135-5

Keywords

Profiles

  1. Tzu-Chien Hsiao