Skip to main content

Advertisement

Log in

A wireless power transmission system for implantable devices in freely moving rodents

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Reliable wireless power delivery for implantable devices in animals is highly desired for safe and effective experimental use. Batteries require frequent replacement; wired connections are inconvenient and unsafe, and short-distance inductive coupling requires the attachment of an exterior transmitter to the animal’s body. In this article, we propose a solution by which animals with implantable devices can move freely without attachments. Power is transmitted using coils attached to the animal’s cage and is received by a receiver coil implanted in the animal. For a three-dimensionally uniform delivery of power, we designed a columnar dual-transmitter coil configuration. A resonator-based inductive link was adopted for efficient long-range power delivery, and we used a novel biocompatible liquid crystal polymer substrate as the implantable receiver device. Using this wireless power delivery system, we obtain an average power transfer efficiency of 15.2 % (minimum efficiency of 10 % and a standard deviation of 2.6) within a cage of 15 × 20 × 15 cm3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Akin T, Najafi K, Bradley RM (1998) A wireless implantable multichannel digital neural recording system for a micromachined sieve electrode. IEEE J Solid-State Circuits 33:109–118

    Article  Google Scholar 

  2. Borton DA, Yin M, Aceros J, Nurmikko A (2013) An implantable wireless neural interface for recording cortical circuit dynamics in moving primates. J Neural Eng 10:026010

    Article  PubMed Central  PubMed  Google Scholar 

  3. Brown WC (1984) The history of power transmission by radio waves. IEEE Trans Microw Theory Tech 32:1230–1242

    Article  Google Scholar 

  4. Cannon BL, Hoburg JF, Stancil DD, Goldstein SC (2009) Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers. IEEE Trans Power Electron 24:1819–1825

    Article  Google Scholar 

  5. Carta R, Tortora G, Thoné J, Lenaerts B, Valdastri P, Menciassi A, Dario P, Puers R (2009) Wireless powering for a self-propelled and steerable endoscopic capsule for stomach inspection. Biosens Bioelectron 25:845–851

    Article  CAS  PubMed  Google Scholar 

  6. Carta R, Thoné J, Puers R (2010) A wireless power supply system for robotic capsular endoscopes. Sensor Actuat A-phys 162:177–183

    Article  CAS  Google Scholar 

  7. Catrysse M, Hermans B, Puers R (2004) An inductive power system with integrated bi-directional data-transmission. Sensor Actuat A-phys 115:221–229

    Article  CAS  Google Scholar 

  8. Chang-Gyun K, Dong-Hyun S, Jung-Sik Y, Jong-Hu P, Cho BH (2001) Design of a contactless battery charger for cellular phone. IEEE Trans Ind Electron 48:1238–1247

    Article  Google Scholar 

  9. Cong P, Chaimanonart N, Ko WH, Young DJ (2009) A wireless and batteryless 10-bit implantable blood pressure sensing microsystem with adaptive RF powering for real-time laboratory mice monitoring. IEEE J Solid-State Circuits 44:3631–3644

    Article  Google Scholar 

  10. Cong P, Ko WH, Young DJ (2010) Wireless batteryless implantable blood pressure monitoring microsystem for small laboratory animals. IEEE Sens J 10:243–254

    Article  Google Scholar 

  11. Guoxing W, Wentai L, Sivaprakasam M, Kendir GA (2005) Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants. IEEE Trans Circuits Syst I Regul Pap 52:2109–2117

    Article  Google Scholar 

  12. Heetderks WJ (1988) Rf powering of millimeter- and submillimeter-sized neural prosthetic implants. IEEE Trans Biomed Eng 35:323–327

    Article  CAS  PubMed  Google Scholar 

  13. Hochmair ES (1984) System optimization for improved accuracy in transcutaneous signal and power transmission. IEEE Trans Biomed Eng 31:177–186

    Article  CAS  PubMed  Google Scholar 

  14. Imura T, Hori Y (2011) Maximizing air gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit and Neumann formula. IEEE Trans Ind Electron 58:4746–4752

    Article  Google Scholar 

  15. Jeong J, Lee SW, Min KS, Kim SJ (2012) A novel multilayered planar coil based on biocompatible liquid crystal polymer for chronic implantation. Sensor Actuat A-phys 197:38–46

  16. Jow U-M, Kiani M, Huo X, Ghovanloo M (2012) Towards a smart experimental arena for long-term electrophysiology experiments. IEEE Trans Biomed Circuits Syst 6:414–423

    Article  PubMed Central  PubMed  Google Scholar 

  17. Karalis A, Joannopoulos JD, Soljacic M (2008) Efficient wireless non-radiative mid-range energy transfer. Ann Phys 323:34–48

    Article  CAS  Google Scholar 

  18. Kazimierczuk MK (2008) Rf power amplifier, 1st edn. Wiley, London, pp 179–238

    Google Scholar 

  19. Kendir GA, Wentai L, Guoxing W, Sivaprakasam M, Bashirullah R, Humayun MS, Weiland JD (2005) An optimal design methodology for inductive power link with class-e amplifier. IEEE Trans Biomed Circuits Syst 52:857–866

    Article  Google Scholar 

  20. Kim J, Eun Lee S, Sik Min K, Jung HH, Lee JE, Kim SJ, Chang JW (2013) Ventral posterolateral deep brain stimulation treatment for neuropathic pain shortens pain response after cold stimuli. J Neurosci Res 91:997–1004

    Article  CAS  PubMed  Google Scholar 

  21. Kretzmer EA, Meltzer NE, Haenggeli C, Ryugo DK (2004) An animal model for cochlear implants. Arch Otolaryngol Head Neck Surg 130:499–508

    Article  PubMed  Google Scholar 

  22. Kurs A, Karalis A, Moffatt R, Joannopoulos JD, Fisher P, Soljacic M (2007) Wireless power transfer via strongly coupled magnetic resonances. Science 317:83–86

    Article  CAS  PubMed  Google Scholar 

  23. Lee SE, Jun SB, Lee HJ, Kim J, Lee SW, Im C, Shin HC, Chang JW, Kim SJ (2012) A flexible depth probe using liquid crystal polymer. IEEE Trans Biomed Eng 59:2085–2094

    Article  PubMed  Google Scholar 

  24. Lee SW, Min KS, Jeong J, Kim J, Kim SJ (2011) Monolithic encapsulation of implantable neuroprosthetic devices using liquid crystal polymers. IEEE Trans Biomed Eng 58:2255–2263

    Article  Google Scholar 

  25. Lee TH, Pan H, Kim IS, Kim JK, Cho TH, Oh JH, Yoon YB, Lee JH, Hwang SJ, Kim SJ (2010) Functional regeneration of a severed peripheral nerve with a 7-mm gap in rats through the use of an implantable electrical stimulator and a conduit electrode with collagen coating. Neuromodulation 13:299–304

    Article  PubMed  Google Scholar 

  26. Lenaerts B, Puers R (2005) Inductive powering of a freely moving system. Sensor Actuat A-phys 123–124:522–530

    Article  Google Scholar 

  27. Lenaerts B, Puers R (2007) An inductive power link for a wireless endoscope. Biosens Bioelectron 22:1390–1395

    Article  CAS  PubMed  Google Scholar 

  28. Marino C, Cristalli G, Galloni P, Pasqualetti P, Piscitelli M, Lovisolo GA (2000) Effects of microwaves (900 mhz) on the cochlear receptor: exposure systems and preliminary results. Radiat Environ Biophys 39:131–136

    Article  CAS  PubMed  Google Scholar 

  29. Mori K, Lim H, Iguchi S, Ishida K, Takamiya M, Sakurai T (2012) Positioning-free resonant wireless power transmission sheet with staggered repeater coil array (srca). IEEE Antennas Wirel Propag Lett 11:1710–1713

    Article  Google Scholar 

  30. Park SI, Oh JH, Hwang YS, Kim SJ, Chang JW (2006) Electrical stimulation of the anterior cingulate cortex in a rat neuropathic pain model. Acta Neurochir Suppl 99:65–71

    Article  CAS  PubMed  Google Scholar 

  31. Perlmutter JS, Mink JW (2006) Deep brain stimulation. Annu Rev Neurosci 29:229–257

    Article  CAS  PubMed  Google Scholar 

  32. RamRakhyani AK, Mirabbasi S, Mu C (2011) Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants. IEEE Trans Biomed Circuits Syst 5:48–63

    Article  CAS  PubMed  Google Scholar 

  33. RamRakhyani AK, Lazzi G (2012) On the design of efficient multi-coil telemetry system for biomedical implants. IEEE Trans Biomed Circuits Syst 7:11–23

  34. Sample AP, Yeager DJ, Powledge PS, Mamishev AV, Smith JR (2008) Design of an RFID-based battery-free programmable sensing platform. IEEE Trans Instrum Meas 57:2608–2615

    Article  Google Scholar 

  35. Sample AP, Meyer DA, Smith JR (2011) Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans Ind Electron 58:544–554

    Article  Google Scholar 

  36. Scammell TE, Estabrooke IV, McCarthy MT, Chemelli RM, Yanagisawa M, Miller MS, Saper CB (2000) Hypothalamic arousal regions are activated during modafinil-induced wakefulness. J Neurosci 20:8620–8628

    CAS  PubMed  Google Scholar 

  37. Schuylenbergh KV, Puers R (2009) Inductive powering. Basic theory and application to biomedical systems, 1st edn. Springer, Heidelberg, pp 41–76

    Google Scholar 

  38. Singh V, Qusba A, Roy A, Castro RA, McClure K, Dai R, Greenberg RJ, Weiland JD, Humayun MS, Lazzi G (2009) Specific absorption rate and current densities in the human eye and head induced by the telemetry link of an epiretinal prosthesis. IEEE Trans Antennas Propag 57:3110–3118

    Article  Google Scholar 

  39. Thomas SJ, Harrison RR, Leonardo A, Reynolds MS (2012) A battery-free multichannel digital neural/emg telemetry system for flying insects. IEEE Trans Biomed Circuits Syst 6:424–436

    Article  PubMed  Google Scholar 

  40. Wei XC, Li EP, Guan YL, Chong YH (2009) Simulation and experimental comparison of different coupling mechanisms for the wireless electricity transfer. J Electromagn Waves Appl 23:925–934

    Article  Google Scholar 

  41. Wilson BS, Finley CC, Lawson DT, Wolford RD, Eddington DK, Rabinowitz WM (1991) Better speech recognition with cochlear implants. Nature 352:236–238

    Article  CAS  PubMed  Google Scholar 

  42. Zierhofer CM, Hochmair ES (1990) High-efficiency coupling-insensitive transcutaneous power and data transmission via an inductive link. IEEE Trans Biomed Eng 37:716–722

    Article  CAS  PubMed  Google Scholar 

  43. Zrenner E (2002) Will retinal implants restore vision? Science 295:1022–1025

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Pioneer Research Center Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2009-0082961), Public Welfare & Safety research program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2010-0020851), Technology Innovation Program (10033657) of the Ministry of Knowledge Economy (MKE), and IC Design Education Center (IDEC), KAIST. Brain Korea 21 Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung June Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 5 kb)

Supplementary material 2 (MPG 11890 kb)

Supplementary material 3 (WMV 1891 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eom, K., Jeong, J., Lee, T.H. et al. A wireless power transmission system for implantable devices in freely moving rodents. Med Biol Eng Comput 52, 639–651 (2014). https://doi.org/10.1007/s11517-014-1169-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-014-1169-3

Keywords

Navigation