Abstract
The goal of ECG-imaging (ECGI) is to reconstruct heart electrical activity from body surface potential maps. The problem is ill-posed, which means that it is extremely sensitive to measurement and modeling errors. The most commonly used method to tackle this obstacle is Tikhonov regularization, which consists in converting the original problem into a well-posed one by adding a penalty term. The method, despite all its practical advantages, has however a serious drawback: The obtained solution is often over-smoothed, which can hinder precise clinical diagnosis and treatment planning. In this paper, we apply a binary optimization approach to the transmembrane voltage (TMV)-based problem. For this, we assume the TMV to take two possible values according to a heart abnormality under consideration. In this work, we investigate the localization of simulated ischemic areas and ectopic foci and one clinical infarction case. This affects only the choice of the binary values, while the core of the algorithms remains the same, making the approximation easily adjustable to the application needs. Two methods, a hybrid metaheuristic approach and the difference of convex functions (DC), algorithm were tested. For this purpose, we performed realistic heart simulations for a complex thorax model and applied the proposed techniques to the obtained ECG signals. Both methods enabled localization of the areas of interest, hence showing their potential for application in ECGI. For the metaheuristic algorithm, it was necessary to subdivide the heart into regions in order to obtain a stable solution unsusceptible to the errors, while the analytical DC scheme can be efficiently applied for higher dimensional problems. With the DC method, we also successfully reconstructed the activation pattern and origin of a simulated extrasystole. In addition, the DC algorithm enables iterative adjustment of binary values ensuring robust performance.










Similar content being viewed by others
References
Aydin U, Dogrusoz YS (2011) A Kalman filter-based approach to reduce the effects of geometric errors and the measurement noise in the inverse ECG problem. Med Biol Eng Comput 49:1003–1013
Birgin E, Martínez J, Raydan M (2000) Nonmonotone spectral projected gradient methods on convex sets. SIAM J Optim 10:1196–1211
Brooks DH, Keely A, Ghodrati A, Tadmor G, MacLeod RS (2007) Some spatio-temporal approaches to inverse electrocardiography. In: IEEE Conference record of the forty-first asilomar conference on signals, systems and computers, 2007. ACSSC 2007, pp 751–755
Brooks DH, Ahmad GF, MacLeod RS, Maratos GM (1999) Inverse electrocardiography by simultaneous imposition of multiple constraints. IEEE Trans Biomed Eng 46:3–18
Cuppen JJM, Van Oosterom A (1984) Model studies with the inversely calculated lsochrones of ventricular depolarization. IEEE Trans Biomed Eng 31(10):652–659
Farina D (2008) Forward and inverse problems of electrocardiography: clinical investigations. Ph.D. thesis
Farina D, Jiang Y, Dössel O (2009) Acceleration of fem-based transfer matrix computation for forward and inverse problems of electrocardiography. Med Biol Eng Comput 47:1229–1236
Fischer G, Pfeifer B, Seger M, Hintermuller C, Hanser F, Modre R, Tilg B, Kremser C, Roitinger FX, Hintringer F (2005) Computationally efficient noninvasive cardiac activation time imaging. Method Inf Med 44:674
Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol 41:2271–2293
Geselowitz DB, Miller TW (1983) A bidomain model for anisotropic cardiac muscle. Ann Biomed Eng 11:191–206
Ghosh S, Avari JN, Rhee EK, Woodard PK, Rudy Y (2008) Hypertrophic cardiomyopathy with preexcitation: insights from noninvasive electrocardiographic imaging (ECGI) and catheter mapping. J Cardiovasc Electrophysiol 19:1215–1217
Ghosh S, Avari JN, Rhee EK, Woodard PK, Rudy Y (2008) Noninvasive electrocardiographic imaging (ECGI) of epicardial activation before and after catheter ablation of the accessory pathway in a patient with Ebstein anomaly. Heart Rhythm Off J Heart Rhythm Soc 5:857–860
Ghosh S, Rudy Y (2009) Application of L1-norm regularization to epicardial potential solution of the inverse electrocardiography problem. Ann Biomed Eng 37:902–912
Glover F, Kochenberger G, Alidaee B (1998) Adaptive memory Tabu search for binary quadratic programs. Manag Sci 44:336–345
Hansen PC (2001) The L-curve and its use in the numerical treatment of inverse problems. In: Johnston P (ed) Computational inverse problems in electrocardiography. Advances in computational bioengineering. WIT Press, pp 119–142
Helmberg C, Rendl F (1998) Solving quadratic (0, 1)-problems by semidefinite programs and cutting planes. Math Program 82:291–315
Jiang M, Xia L, Shou G, Tang M (2007) Combination of the ISQR method and a genetic algorithm for solving the electrocardiography inverse problem. Phys Med Biol 52:1277
Jiang Y, Farina D, Dössel O (2008) Localization of the origin of ventricular premature beats by reconstruction of electrical sources using spatio-temporal map-based regularization. In: Proceedings of 4th Euro conference on international federation medicine and biological engineering, vol 22, pp 2511–2514
Katayama K, Narihisa H (2001) Performance of simulated annealing-based heuristic for the unconstrained binary quadratic programming problem. Eur J Oper Res 134:103–119
Katayama K, Tani M, Narihisa H (2000) Solving large binary quadratic programming problems by effective genetic local search algorithm. In: GECCO, pp 643–650
Kennedy J, Eberhart R (1997) A discrete binary version of the particle swarm algorithm. IEEE Trans Syst Man Cybern 5:4104–4108
Li D, Li CY, Yong AC, Kilpatrick D (1998) Source of electrocardiographic ST changes in subendocardial ischemia. Circ Res 82:957–970
Lü Z, Glover F, Hao JK (2010) A hybrid metaheuristic approach to solving the UBQP problem. Eur J Oper Res 207:1254–1262
MacLachlan MC, Nielsen BF, Lysaker M, Tveito A (2006) Computing the size and location of myocardial ischemia using measurements of ST-segment shift. IEEE Trans Biomed Eng 53:1024–1031
Merz P, Freisleben B (1999) Genetic algorithms for binary quadratic programming. In: Citeseer (ed) GECCO, vol 1, pp 417–424
Messnarz B, Tilg B, Modre R, Fischer G, Hanser F (2004) A new spatiotemporal regularization approach for reconstruction of cardiac transmembrane potential patterns. IEEE Trans Biomed Eng 51:273–281
Modre R, Tilg B, Fischer G, Hanser F, Messnarz B, Seger M, Hintringer F, Roithinger F (2004) Ventricular surface activation time imaging from electrocardiogram mapping data. Med Biol Eng Comput 42:146–150
Nielsen BF, Lysaker M, Grottum P (2013) Computing ischemic regions in the heart with the bidomain model—first steps towards validation. IEEE Trans Med Imaging 32:1085–1096
Oster HS, Rudy Y (1992) The use of temporal information in the regularization of the inverse problem of electrocardiography. IEEE Trans Biomed Eng 39:64–75
Palubeckis G (2006) Iterated tabu search for the unconstrained binary quadratic optimization problem. Informatica 17:279–296
Pardalos PM, Rodgers GP (1990) Computational aspects of a branch and bound algorithm for quadratic zero-one programming. Computing 45:131–144
Ramanathan C, Jia P, Ghanem R, Calvetti D, Rudy Y (2003) Noninvasive electrocardiographic imaging (ECGI): application of the generalized minimal residual (GMRES) method. Ann Biomed Eng 31:981–994
Schüle T, Schnörr C, Weber S, Hornegger J (2005) Discrete tomography by convex–concave regularization and DC programming. Discret Appl Math 151:229–243
Schüle T, Weber S, Schnörr C (2005) Adaptive reconstruction of discrete-valued objects from few projections. Electron Notes Discret Math 20:365–384
Shou G, Xia L, Jiang M, Wei Q, Liu F, Crozier S (2008) Truncated total least squares: a new regularization method for the solution of ECG inverse problems. IEEE Trans Biomed Eng 55:1327–1335
Shou G, Xia L, Liu F, Jiang M, Crozier S (2011) On epicardial potential reconstruction using regularization schemes with the L1-norm data term. Phys Med Biol 56:57
Tao P, An L (1998) A DC optimization algorithm for solving the trust-region subproblem. SIAM J Optim 8:476–505
Tikhonov AN, Arsenin VY (1977) Solutions of ill-posed problem. Winston & Sons, New York
van Oosterom A, Huiskamp G (1993) Spatio-temporal constraints in inverse electrocardiography. In: Ghista D (ed) Proceedings of the second gauss symposium on biomedical and life physics. Vieweg, Munich, pp 203–214
Wang S, Arthur R (2009) A new method for estimating cardiac transmembrane potentials from the body surface. Int J Bioelectromagn 11:59–63
Wang D, Kirby RM, MacLeod RS, Johnson CR (2013) Inverse electrocardiographic source localization of ischemia: an optimization framework and finite element solution. J Comput Phys 250:403–424
Weber S, Nagy A, Schüle T, Schnörr C, Kuba A (2006) A benchmark evaluation of large-scale optimization approaches to binary tomography. In: Discrete geometry for computer imagery. Lecture Notes in Computer Science, vol 4245. Springer, Berlin, pp 146–156
Acknowledgments
This work was financially supported by the German Research Foundation under the Grant DO 637/13-1.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Potyagaylo, D., Cortés, E.G., Schulze, W.H.W. et al. Binary optimization for source localization in the inverse problem of ECG. Med Biol Eng Comput 52, 717–728 (2014). https://doi.org/10.1007/s11517-014-1176-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11517-014-1176-4