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Abstract 

Ventricular repolarization dynamics is an important predictor of the outcome in cardiovascular 

diseases. Mathematical modeling of the heart rate variability (    interval variability) and 

ventricular repolarization variability (    interval variability) is one of the popular methods to 

understand the dynamics of ventricular repolarization.  Although ECG derived respiration (   ) 

was previously suggested as a surrogate of respiration but effect of respiratory movement on 

ventricular repolarization dynamics was not studied.  In this study, the importance of considering 

the effect of respiration and the validity of using     as a surrogate of respiration for linear 

parametric modeling of ventricular repolarization variability is studied in two cases with different 

physiological and psychological conditions. In the first case study, we used 20 young and 20 old 

healthy subjects’ ECG and respiration data from Fantasia database at Physionet to analyse a 

bivariate        and a trivariate                    model structure to study the 

ageing effect on cardiac repolarization variability.  In the second study, we used 16 healthy 

subjects’ data from drivedb (stress detection for automobile drivers) database at Physionet to do 

the same analysis for different psychological condition (i.e. in stressed and no stress condition). 

The results of our study showed that model having respiratory information (           and 

         ) gave significantly better fit value (p<0.05) than that of found from the    
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  ) model.     showed statistically similar (p>0.05) performance as that of respiration as an 

exogenous model input in describing repolarization variability irrespective of age and different 

mental conditions. Another finding of our study is that both respiration and     based models can 

significantly (p<0.05) differentiate the ventricular repolarization dynamics between healthy 

subjects of different age groups and with different psychological conditions whereas models 

without respiration or     cannot distinguish between the groups. These results established the 

importance of using respiration and the validity of using     as a surrogate of respiration in the 

absence of respiration signal recording in linear parametric modeling of ventricular repolarization 

variability in healthy subjects.  

Keywords 

ECG derived respiration, heart rate variability, ventricular repolarization variability, 

repolarization dynamics, linear parametric model, respiration, stress, ageing 

1. Introduction 

Modeling heart rate (HR) variability (i.e.    interval variability) and ventricular 

repolarization (VR) variability (i.e.    interval variability) is a non-invasive 

estimation of the dynamic properties of the cardiovascular system. Although, both 

HR and VR are controlled predominantly by autonomic nervous system (ANS) 

[2], VR variability (VRV) is also directly affected by the HR variability (HRV) 

and other factors like respiration [24,26].  Respiration directly affects HRV 

through respiratory sinus arrhythmia (RSA) [26,4] and it also affect VRV due to 

direct relation between VRV and HRV. Hanson et al.[9] has also reported the 

presence of cyclic modulation of VR duration due to respiration in healthy human. 

Therefore, respiration signal should be added in modeling    and    interactions 

for better comprehension of ventricular repolarization dynamics. 

 

Traditional respiration signal recording procedures (e.g. impedance 

pneumography, spyrometery etc.) were not very much suited in cases like 

ambulatory monitoring and sleep study due to the necessity of using bulky and 

expensive recording devices which might affect the natural breathing process of 

the subject [3,5].  Since the cost and complexity associated with respiratory signal 

acquisition restricts the recording of respiratory information in every situation, a 

lot of research has been conducted to devise and validate a surrogate for 

respiratory movement from other available physiological signals. Among others, 



3 

ECG signal has been highly used to extract respiratory movement in ambulatory 

settings. The ECG derived respiration (   ) has been successfully used as a 

surrogate for respiration in various studies with different physiological and 

pathological conditions [3,7,15,20] and in daily dynamic activity monitoring from 

ambulatory single lead ECG [5]. However, to our knowledge     has never been 

used as a surrogate of respiration in modeling VR dynamics.  

 

Porta et al. [24,26] first proposed a linear dynamic autoregressive model from 

short length ECG data describing VR dynamics using    and    interval (both 

       and       intervals) interactions. They used    interval (  wave to   

wave peak or end intervals) instead of    interval due to problems in proper 

detection of   wave and   wave end in describing the VR duration variability 

[24,26]. Almeida et al. [2] have used the same model structure reported by Porta 

et al. [24] except for using       interval instead of    interval to describe the 

effect of heart rate and autonomic nervous system on VR dynamics. These studies 

validated the use of linear autoregressive models to describe the VR dynamics for 

short length ECG segments (i.e. 5 min ECG) where the    and    intervals are 

assumed to be stationary within the data length. 

 

The main objectives of our study are: (i) to investigate the effect of respiration on 

modeling VRV and the validity of using     as an exogenous input in place of 

original respiration signal in       modeling; and (ii) to check whether     

shows the similar effect as that of respiration on VR dynamics with ageing and 

with stress induction in healthy subjects. We hypothesize that respiration signal 

should be added for better comprehension of  VR dynamics and      can be used 

as a surrogate of respiration for  modeling VR dynamics where respiration signal 

is not available. To validate our hypotheses we designed two case studies using 

two databases available at Physionet (i.e. Fantasia and drivedb). We used both 

       and       intervals in both studies to design the models for understanding 

the respiratory effect in improving the model performance to describe VR 

dynamics.  
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2. Data and Methods 

2.1. Subjects 

To investigate the effect of respiration and to check whether      can describe  

cardiac repolarization dynamics with the variation of age in the first case study, a 

total of 20 young (21-34 years) and 20 old subjects’ (68-85 years) ECG and 

respiration signals were collected from Fantasia database available at Physionet 

[8]. In both Young and old groups, equal numbers of male and female (i.e. 10 

male and 10 female) subjects were recruited for data collection with no history of 

cardiovascular diseases. From the 120 mins of simultaneous recording of Lead II 

ECG and respiration, we used 5 minutes of ECG and respiration signals for 

extracting the   ,    and     time series for modeling. 5 minutes section was 

selected such that   and   waves of ECG were clearly visible and detectable 

within the selected segment and the respiration signal was free from any visible 

movement artifacts. Subjects were in supine resting state in sinus rhythm and 

watching the movie Fantasia (Disney, 1940) to remain awake during the data 

recording period. Respiratory movement was recorded using the thoracic belt. 

Both ECG and respiration signals were sampled at 250 Hz.   

 

For the second study, the ECG and respiration signals were taken from Stress 

Recognition in Automobile Drivers (drivedb) database available at Physionet [8] 

to understand the       interactions in changed psychological conditions. 

From this database, a total of 16 healthy subjects’ data were taken out of 17 

subjects’ recordings. One recording (drive01) was dropped from our study due to 

problem in proper detection of   wave parameters. Using this database, an 

experimental protocol was designed and verified for the detection of stress using 

various physiological signals (e.g. Electrocardiogram (ECG), Electromyogram 

(EMG), skin conductivity and respiration), which was induced due to driving in 

heavy traffic condition. The total drive period consisted of rest, highway and city 

driving with heavy traffic which were assumed to induce low, medium and high 

level of stress in the driver’s mind. The details of this study protocol i.e. driving 

protocol, driving period, stress measurement and validation of stress level 

assessment techniques etc. were described in details by Healy et al. [10]. In this 

study, we have used 5 minutes ECG and respiration signals segment during 
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resting (i.e. No Stress) and city driving (i.e. Highly Stressed) conditions. 

Recordings of resting condition were treated as data for stable physiological 

condition and grouped as “No stress”, whereas recordings of city driving 

condition were considered as stressed condition data and grouped as “Stressed”.  

ECG signals were recorded with a modified lead II configuration and sampled at 

496Hz. The respiration signals were recorded with an elastic Hall Effect sensor by 

measuring the chest cavity expansion of the subject at 31Hz sampling frequency. 

The detail procedure of signal collection and analysis was described in [10]. 

2.2. ECG and respiratory signal parameter extraction 

ECG signal was first filtered with a median filter to remove baseline wandering. 

The    and    interval time series were formed by detecting the   wave peak,   

wave onset,   wave peak and   wave end from the ECG signal. Different wave 

components and intervals of ECG signal used in this study are shown in Figure1.  

 

Figure 1: Different ECG wave components ( ,  , and   waves) and measurement of     and QT 

intervals (       and      ) for three cardiac beats. 

 

The    interval was found from the difference between two consecutive   wave 

peaks which are detected by an algorithm for detecting     complex proposed by 

Pan et al. [22].  The   wave onset (i.e.   point) is determined by detecting the 

time instant where the gradient of the     complex becomes negative to the left 

of the   wave peak. The peak of the   wave was detected by searching for the 

highest point after the   wave. The   wave end or offset is found by searching for 

the point where the gradient of the   wave first changes its sign after the 
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occurrence of   wave peak. This method of detecting the end of the   wave is 

similar to the maximum slope intercept method, which defines the end of the   

wave as the intercept between the isoelectric line with the tangent drawn through 

the maximum down slope of the   wave [30,31]. We used both        (i.e. 

interval from the   wave onset to the peak of   wave) and       (i.e. interval 

from   wave onset to the end of   wave) intervals to build and validate the model 

performance. Ectopic beats were removed from    interval series before used in 

modeling using the criteria used by Huikuri et al. [11]  though the number of 

ectopic beats is negligible in the recordings. Variations in    interval time series 

were also checked by the criteria proposed by Clifford et al. [6] to remove rapid 

fluctuations, which affect the linear property of the R  series required for the 

model formation.    intervals outside the range of 3-SD band were rejected for 

the formation    interval time series, which is the model output signal. This was 

done for maintaining the stationarity in the input and output time series data for 

this linear model analysis. The respiration signal time series (    ) for the model 

was formed by sampling the continuous respiratory signal recording at each   

peak of the ECG. For the derivation of    , we used the   wave amplitude 

method for single lead ECG. In this method, first the ECG signal is filtered for 

baseline wandering by a median filter. Then from the baseline corrected ECG, 

    wave were detected using Pan Tompkin’s algorithm [22] and the amplitude 

of the   wave peaks from the detected     wave were recorded to generate the 

    wave time series [14,20]. The sampled respiration (    ) and      

calculation technique is graphically illustrated in figure 2. 
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Figure 2: Derivation of      (sampled respiration signal) and     (ECG derived respiration) 

signal time series from the respiration and baseline corrected ECG signal. (A) shows that         

signal which is  formed from the sampled values of respiration signal collected by thoracic belt at 

every      that is the magnitude of   wave at every   wave peak location and i=1,2….n where n is 

the number of ECG   peaks.  (B)        waveform is calculated from the variation of   wave 

peak amplitudes,      in the baseline filtered ECG waveform. (C) and (D) shows a sample 

segment of  both the      and     time series used as model input parameters.   

2.3. Linear parametric model formation 

Due to subjective variation of       relation [19], each subject in this study 

was modeled individually using the fixed model structure (i.e. ARXAR or 

ARXXAR) by varying the model order to measure the model performance in 

predicting    interval. First 250 consecutive beats of the derived    ,   (both 

       and      ),      and     time series from five minute ECG segment 

were used for the formation of the autoregressive models.    ,   , sampled 

respiration (    ) and     time series data were linearly detrended by 

subtracting mean and dividing by the standard deviation before using as model 

input and output parameters. We first analysed         model, a bivariate 

single input (i.e.    is the single exogenous input) single output (SISO) model 

with an autoregressive noise without any respiration signal to study    dynamics. 

Then two more trivariate multi input single output (MISO) type models 

(             and            ) were derived using the methodology 
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developed by Porta et al. [26]  with    and      or     were used as two 

exogenous inputs. Figure 3 shows the basic        type model structure used in 

the analysis.    and respiration signals (     and    ) were used as the 

exogenous inputs in these models. The beat to beat intervals are represented as 

                                               

                     and                        where   is total 

number of beats used for building the model, in this study   =250. The i
th         

or       interval followed the i
th     interval, thus directly linking the present    

interval with the preceding    interval. The i
th

 respiratory sample         was 

taken as the sampled value of the respiration signal at every  -wave peak. 

 

 
 

Figure 3: Linear autoregressive parametric model structure with multiple exogenous inputs.       

may be         or        according to the type of the model. 

 

The equation of the predicted    interval for the bivariate       model is: 

                                                                      (1) 

and the predicted    of the trivariate          model including RESP and 

    are defined as: 

 

                                                                          (2) 

                                                                           (3) 

 

Where       will be         or         according to model input type. The 

model performance was validated using both        and       in place of      . 

The model equations (i.e. equation (1), (2) and (3)) indicate that i
th     interval 

depends on previous    intervals, current and previous    intervals, current and 
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past      samples and other unknown inherent factors independent of    and 

    , which were modelled by the noise term     . A and B represent the model 

transfer function polynomials which actually indicate the memory effect of   , 

  , and      signals that shows how a    interval is affected by current and 

previous    intervals,    intervals, respiration and other unknown factors (i.e. 

direct modulatory effect of autonomic nervous system and any other factor that 

affect    other than    or     ). The model polynomial coefficients are defined 

using the following equations:   

 

                         
                                                                    (4) 

                         
                                                                 (5) 

                             
                                                          (6) 

                           
                                                             (7) 

Here          ,           and                     are       and     

constant coefficients and they were calculated using the system identification 

techniques[17].     is the k lag delay operator in z domain  and    is the identified 

model order which represents the model complexity for simulation. The larger the 

value of   , the more complex is the model structure to identify the interaction of 

the system parameters. 

The autoregressive noise term is identified by the following equation: 

                                                                                                          (8) 

                      

 

   

 

and    is the zero mean white noise.  

The one step ahead prediction error (     ) of the model is calculated from the 

difference between the       and best one step ahead predicted       of the 

derived model denoted as    (i).The equation of       is defined by  

               (i )                                                                                      (9) 

The value of prediction error for the trivariate model incorporating respiration will 

be as below: 

               (i) 

      
               

                 
            

     

                      
            

                                                         (10) 
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where,       will be         or        according to the model input type and 

  
    ,       

    ,       
     and       

     are the model transfer function 

polynomials estimated from the input output data via system identification 

procedure. 

The model goodness of fit value is calculated from the mean squared prediction 

error (MSPE) which measures the ability of the model structure in fitting the data 

using the following equations: 

MSPE = 
 

 
      

  
   (i)                                                                                    (11) 

The value of MSPE varies between 0(i.e. perfect fit) and 1(i.e. model cannot fit 

the data at all).The goodness of fit is defined as 

 Goodness of fit =1-MSPE                                                                            (12)   

and the higher value of the goodness of fit indicates the higher  model prediction 

capability. 

 

2.4 Model parameter identification and validation  

The coefficients of the model transfer function polynomials (i.e. A and B) were 

calculated using Prediction Error Estimation Method (PEM) for linear models 

[17]. This method uses a numerical optimization technique to minimize the 

weighted norm of prediction error, which is defined as the cost function. Model 

prediction capability is determined by the mean squared prediction error, which is 

calculated from the difference between measured output and the one step ahead 

predicted output of the model. Same model order of p was considered in input and 

output polynomials for calculating the coefficients of the model transfer function 

which simplifies the model analysis. The range of model order variation was fixed 

for all subjects and within that range, best model order was selected in terms of 

AIC criteria [1]. Model order was varied from 9 to 19 to find the best model with 

lowest value of AIC. Residual analysis was performed on the selected best model 

according to AIC  to check if the model passed the whiteness test and 

independence test to clarify that model residuals were uncorrelated with each 

other and not correlated with past input values[17]. In our study 99% confidence 

interval was used for the residual test with lag 25 and the model passes the test if 

the residuals were found uncorrelated (i.e. residual autocorrelation function is 

within the confidence interval of the estimated response) and   residuals were 
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found to be uncorrelated with past inputs (i.e. cross correlation between residuals 

and previous inputs was inside the confidence interval with less than 3 points 

outside the confidence interval). All these analysis were done using system 

identification toolbox in MATLAB R2012b. 

2.5 Statistical analysis 

Wilcoxon rank sum test were performed to check the difference between model 

fitting values of the two groups in two databases. Non-parametric version of one 

way ANOVA (i.e. Kruskalwallis test) was used to check the statistical difference 

between three types of model fit values in each database. Then Bonferroni post 

hoc tests were performed to compare pairwise differences for the three model 

types. A value of p <0.05 was considered significant. All the statistical 

calculations were carried out in MATLAB R2012b. 

3. Results 

In this study, the goodness of fit values of the SISO and MISO autoregressive 

models were calculated for two populations of different ages with no 

cardiovascular abnormalities (i.e. Young and Old groups) in Fantasia database.  

Same analysis was done for a young subject group with two different 

psychological conditions available in drivedb database. The variations of model 

fit for        dynamics models in two databases are shown graphically in Figure 

4. In both groups of the two databases, it was found that the model predictability 

(i.e. goodness of fit) increases significantly with the addition of respiration 

information (     or    ) as an exogenous input in comparison to that found 

from the model developed using only    and    signals. Similar results were 

found in       dynamics models and shown in Figure 5. The trivariate models 

(             and            ), which had RESP and     signals as 

respiration signal input along with    and   , showed statistically similar 

goodness of fit values for both        and       dynamics models and both are 

significantly improved with respect to the bivariate (       ) model. These 

results proved that respiration has a significant effect on VR, which should be 

considered for modeling VR dynamics. 



12 

 

Figure 4: Goodness of fit variation of the analysed        dynamics models in Fantasia and 

drivedb Database at Physionet. #indicates the significant differences of model fit between 

        and              model and * indicates the significant model fit differences between 

        and             models. 

 

Table 1 demonstrated the effect of using     instead of respiration in both 

databases. These results show that there is no statistically significant difference in 

model predictability whether it has respiration or     as a model input. This 

validates the use of     in modeling       interactions in the absence of 

respiration signal and the effects of respiration and     were found almost same 

on VRV in this modeling study. Another interesting finding of this type of 

parametric models is that it can also differentiate the effect of ageing and 

alteration of mental state due to stress induction on the cardiovascular system 

dynamics. Models describing        variability can differentiate the young and 

elderly group in Fantasia database and in drivedb database it was found that       

dynamics models can significantly differentiate the changes in ventricular 

repolarization variability with the induction of stress. 
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Figure 5: Goodness of fit variation of the analysed       dynamics models in Fantasia and 

drivedb Database at Physionet. # and * indicate the significant differences of model fit between 

        and              model and between         and             models 

respectively. 

 

Table 1: Performance comparison using the goodness of fit values between the 

trivariate (ARXXAR) models developed with respiration and with    . 

QT 

dynamic

s 

 

Model 

Type 

Fantasia Database Drivedb database  

Young Old p value No stress Stressed p value 
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All model fit values are given as median (first quartile-third quartile).  
     : Interval between   wave onset to   wave end. 
       : Interval between   wave onset to   wave peak.  

* indicates significant difference from Young group. 

 # indicates significant difference in model fit from No stressed condition. 

 

 

0.3

0.4

0.5

0.6

Fantasia database: Old group

G
o

od
n

es
s 

o
f 

fi
t

0.3

0.4

0.5

0.6

0.7
drivedb database: No stress

G
o

od
n

es
s 

o
f 

fi
t

0.3

0.4

0.5

0.6

0.7
drivedb database: Stressed

G
o

od
n

es
s 

o
f 

fi
t

0.3

0.4

0.5

0.6

Fantasia database:Young group

G
o

od
n

es
s 

o
f 

fi
t

#

#
* *

#

*
#

ARX
RR

ARARX
RR

AR ARX
RR

X
RESP

ARARX
RR

X
RESP

AR ARX
RR

X
EDR

AR

ARX
RR

X
RESP

ARARX
RR

AR ARX
RR

X
EDR

AR

*

ARX
RR

AR ARX
RR

X
RESP

AR ARX
RR

X
EDR

AR

ARX
RR

X
EDR

AR

QT
end

 Dynaimcs model



14 

4. Discussion 

In this study, we have analysed the performance of     as an exogenous input for 

modeling VR dynamics using a linear parametric model from short-term ECG 

signal. Short-term HRV at resting condition and respiratory movement were 

reported to be linear with variation of    interval [21,25]. Therefore, we used 

linear parametric autoregressive models to analyse the effect of respiration and 

HR on VR dynamics. The exogenous effect of respiration on    variability was 

first reported by Porta et al. [26,2] and the authors have concluded that respiratory 

related artifacts directly modulate the    interval. The cyclical modulation of VR 

process by respiration and the presence of synchronized high frequency content of 

   or    interval  with respiration even in the absence of    variability were 

also reported in various studies [9,18]. These findings proved the relationship 

between respiration and VR and justified the use of respiration or     as an 

exogenous input with    in the linear model structure of our study to predict VR 

dynamics. Previous studies reported use of both        and       intervals with 

   intervals for model based analysis of VRV and VR dynamics [2,26]. Although 

Almeida et al. [2] emphasized the importance of considering       in       

modeling for complete description of VR dynamics, proper detection of   wave 

end is disputable [26]. Therefore, both        and       intervals were used in 

this study to model VR dynamics. 

 

Model fit values significantly (p<0.05) increased with the inclusion of respiration 

or     for both case studies (i.e. Fantasia and drivedb databases) and for both 

       and       dynamics models (Figure 4 and 5). This supports the previous 

findings that respiration affects    dynamics [9,26] and therefore, use of 

respiration or     in modeling establishes the importance of respiration for better 

comprehension and prognosis of VR dynamics in healthy subjects. Although 

model complexity (i.e. model order) was found insignificantly different (p>0.05) 

among the three types of models,       model needs relatively higher model 

order (average model order 17) than that of the models incorporating respiratory 

information (average model order 15). According to the theory of system 

identification,  if addition of an exogenous input significantly increases the model 

fit without any significant increase in model complexity, then that input has 
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important contribution in controlling the system dynamics [17].  Therefore, the 

reported significant increase in model fit values with the addition of respiratory 

information reflects the effect of respiration or EDR on VR dynamics rather than 

the effect of complex model structure. 

 

    represents the modulatory effect of   wave amplitude due to the rotation of 

mean cardiac electrical axis and the variation of thoracic impedance during 

respiratory cycle. It can reproduce respiratory information even with very low 

respiratory sinus arrhythmia (RSA) from surface ECG [20]. Although there is 

clear evidence of decreasing RSA with age [13],     still can represent the 

respiratory information necessary for describing respiratory effect on 

repolarization [20]. Similar result was found in our analysis, where the model fit 

values showed statistically insignificant difference between the use of respiratory 

signal and     for both case studies. These results validate the hypothesis that 

    can be used as a surrogate of respiratory information in modeling HRV and 

VRV interactions irrespective of age and psychological condition in healthy 

subjects.  

  

Healthy ageing was found to be associated with the continual damage of 

integrated physiological regulatory system control. Increase in    interval 

variability and reduction in vagal modulation with ageing was reported in healthy 

elderly population [23], which could cause the elderly subjects susceptible to 

diseases and make them unable to react properly to the perturbation of autonomic 

nervous system [12].  Moreover,  RSA was reported to be decreased with ageing, 

which might affect the value of     [13] and consequently  the model 

performance. These might be the reasons of the reported decrease in both types of 

model fit values (i.e. model with and without respiration information) in elderly 

population group compared to the young group (Table 1 and Figure 4 & 5). 

Although the model fit values decrease with ageing, the model with respiration 

still performs better in describing VR dynamics than       model without 

respiration (Figure 4 and 5). Since no statistically significant difference in model 

fit values was found between respiration and     based models, it can be 

concluded that     can be used as a surrogate of respiration for modeling of VR 

dynamics in both young and elderly population. Another finding of this group’s 
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study is that the models incorporating respiration or EDR, which describe        

dynamics can differentiate the Young and Elderly groups of Fantasia database 

(Table 1) while the        dynamics models could not. This might be due to the 

absence of significant variability in       interval (i.e.   wave apex to   wave 

end interval) dynamics in the subjects as       interval variability was reported 

to increase with the alteration of psychological condition [29]. Since the ECG and 

respiration signals of Fantasia database were recorded in relaxed supine resting 

condition with no change in mental condition, the effect of       interval 

variability was absent in the derived models. 

 

Stress can induce temporal inhomogeneity in ventricular repolarization process 

that increases the complexity of       interaction [28]. Real life stressed 

situations like the driving of automobile in heavy traffic condition could alter the 

repolarization process by inducing      wave alteration [27]. Excessive stress 

could initiate arrhythmias through temporal and spatial dispersion of VR [16]. 

Therefore, decrease in model fitting values in our healthy young “Stressed” group 

(Table 1) could be due to the increase in sympathetic drive that might be the cause 

for the temporal dispersion in VR process. Models designed with      showed 

similar performance as of respiration signal in interpreting these changes in VR 

dynamics, which indicates that EDR can be used as a surrogate of respiration for 

modeling VR dynamics in psychologically stressed situations. Moreover, both 

respiration and     based models describing       dynamics could significantly 

(p<0.05) differentiate the “Stressed” and “No stress” groups, which might be 

linked with the effect of       interval variability on VR dynamics. 

 

4.1. Limitations  

In this study, the respiration and ECG signals were recorded at supine resting 

condition for subjects in Fantasia database and in sitting condition within a car 

with seat belt fastened for the subjects of drivedb database. As a result, the effects 

of postural changes on     are not considered in this study that might affect the 

EDR based model performance. Therefore, we recommend the use of respiration 

signal in clinical settings and     should be used where respiration signal is 

absent. 
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Although the fit value increases significantly with the addition of     or 

respiration in the        model, the fit values are not very high (Table 1). In 

this study, we assumed linear relation among respiration, HRV and VRV. 

However, these are not completely linear in nature and therefore, a more complex 

and non-linear model may improve the fitting value of the models describing VR 

dynamics. In addition, we assumed that respiration and    interval are completely 

independent of each other on their effect on VRV. This could be another reason 

for low fit value obtained in this study. 

5. Conclusion 

Irrespective of age and psychological conditions of the healthy individual, the 

derived linear parametric            models from short term ECG showed 

almost the same level of predictability as that of the models derived using 

respiration (i.e.           ). Therefore, the proposed hypothesis that     

can be used as a surrogate of respiration signal in       modeling from short 

term ECG segment recorded in steady postural condition (i.e. supine or sitting) 

was found to be correct in this study. Since     can be collected from the ECG 

signal only, this would reduce the complexity involved in recording respiration 

signal. Whether respiration or     is used, the model prediction capability 

showed significant improvement in comparison to normal       model 

without any respiratory information. Respiratory information based models can 

also significantly differentiate the effect of ageing and psychological changes due 

to stress of healthy subjects.   In future, it will be interesting to explore the 

performance of     for modeling VR dynamics in controlled breathing 

conditions, various postural maneuvers and diverse pathological conditions. 
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