Skip to main content
Log in

Toward hemodynamic diagnosis of carotid artery stenosis based on ultrasound image data and computational modeling

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The ability of using non-expensive ultrasound (US) image data together with computer fluid simulation to access various severities of carotid stenosis was inquired in this study. Subject-specific hemodynamic conditions were simulated using a developed finite element solver. Individual structured meshing of the common carotid artery (CCA) bifurcation was built from segmented longitudinal and cross-sectional US images; imposed boundary velocities were based on Doppler US measurements. Simulated hemodynamic parameters such as velocities, wall shear stress (WSS) and derived descriptors were able to predict disturbed flow conditions which play an important role in the development of local atherosclerotic plaques. Hemodynamic features from six individual CCA bifurcations were analyzed. High values of time-averaged WSS (TAWSS) were found at stenosis site. Low values of TAWSS were found at the bulb and at the carotid internal and external branches depending on the particular features of each patient. High oscillating shear index and relative residence time values assigned highly disturbed flows at the same artery surface regions that correlate only moderately with low TAWSS results. Based on clinic US examinations, results provide estimates of flow changes and forces at the carotid artery wall toward the link between hemodynamic behavior and stenosis pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. AbuRahma AF, Srivastava M, Stone PA, Mousa AY, Jain A, Dean LS, Keiffer T, Emmett M (2011) Critical appraisal of the Carotid Duplex Consensus criteria in the diagnosis of carotid artery stenosis. J Vasc Surg 53(1):53–59

    Article  PubMed  Google Scholar 

  2. Almeida R, Feijóo R, Galeão A, Padra C, Silva R (2000) Adaptive finite element computational fluid dynamics using an anisotropic error estimator. Comput Methods Appl Mech Eng 182(3–4):379–400

    Article  Google Scholar 

  3. Antiga L, Piccinelli M, Botti L, Ene-Iordache B, Remuzzi A, Steinman D (2008) An image-based modeling framework for patient-specific computational hemodynamics. Med Biol Eng Comput 46:1097–1112

    Article  PubMed  Google Scholar 

  4. Botnar R, Rappitsch G, Scheidegger MB, Liepsch D, Perktold K, Boesiger P (2000) Hemodynamics in the carotid artery bifurcation: a comparison between numerical simulations and in vitro MRI measurements. J Biomech 33:137–144

    Article  PubMed  CAS  Google Scholar 

  5. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  PubMed  CAS  Google Scholar 

  6. Davies PF (2009) Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovascu Med 6(1):16–26

    Article  CAS  Google Scholar 

  7. De Santis G, Mortier P, De Beule M, Segers P, Verdonck P, Verhegghe B (2010) Patient-specific computational fluid dynamics: structured mesh generation from coronary angiography. Med Biol Eng Comput 48(4):371–380

    Article  PubMed  Google Scholar 

  8. De Santis G, Conti M, Trachet B, De Schryver T, De Beule M, Degroote J, Vierendeels J, Auricchio F, Segers P, Verdonck P, Verhegghe B (2013) Haemodynamic impact of stent-vessel (mal) apposition following carotid artery stenting: mind the gaps! Comput Methods Biomech Biomed Engin 16(6):648–659

    Article  PubMed  Google Scholar 

  9. Dong J, Wong KK, Tu J (2013) Hemodynamics analysis of patient-specific carotid bifurcation: a CFD model of downstream peripheral vascular impedance. Int J Numer Method Biomed Eng 29(4):476–491

    Article  PubMed  Google Scholar 

  10. Fan Y, Jiang W, Zou Y, Li J, Chen J, Deng X (2009) Numerical simulation of pulsatile non-Newtonian flow in the carotid artery bifurcation. Acta Mech Sin 25(2):249–255

    Article  Google Scholar 

  11. Filipovic N, Teng Z, Radovic M, Saveljic I, Fotiadis D, Parodi O (2013) Computer simulation of three-dimensional plaque formation and progression in the carotid artery. Med Biol Eng Comput 51(6):607–616

    Article  PubMed  Google Scholar 

  12. Gill JD, Ladak HM, Steinman DA, Fenster A (2000) Accuracy and variability assessment of a semiautomatic technique for segmentation of the carotid arteries from three dimensional ultrasound images. Med Phys 27:1333–1342

    Article  PubMed  CAS  Google Scholar 

  13. Groen HC, Gijsen FJH, van der Lugt A, Ferguson MS, Hatsukami TS, van der Steen AFW, Yuan C, Wentzel JJ (2007) Plaque rupture in the carotid artery is localized at the high shear stress region: a case report. Stroke 38:2379–2381

    Article  PubMed  Google Scholar 

  14. Hoi Y, Wasserman BA, Lakatta EG, Steinman DA (2010) Carotid bifurcation hemodynamics in older adults: effect of measured vs. assumed. J Biomech Eng 132(7):071006

    Article  PubMed  PubMed Central  Google Scholar 

  15. Inzitari D, Eliasziw M, Gates P, Sharpe BL, Chan RK, Meldrum HE, Barnett HJ (2000) The causes and risk of stroke in patients with asymptomatic internal carotid artery stenosis. N Engl J Med 342:1693–1701

    Article  PubMed  CAS  Google Scholar 

  16. Jahromi AS, Cinà CS, Liu Y, Clase CM (2005) Sensitivity and specificity of color duplex ultrasound measurement in the estimation of internal carotid artery stenosis: a systematic review and meta-analysis. J Vasc Surg 41(6):962–972

    Article  PubMed  Google Scholar 

  17. Kim HJ, Figueroa CA, Hughes TJR, Jansen KE, Taylor CA (2009) Augmented Lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow. Comput Methods Appl Mech Eng 198:3551–3566

    Article  Google Scholar 

  18. Ku DN, Giddens DP, Zarins CK, Glagov S (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation—positive correlation between plaque location and low and oscillating shear-stress. Arteriosclerosis 5(3):293–302

    Article  PubMed  CAS  Google Scholar 

  19. Lanktom S, Tannenbaum A (2008) Localizing region-based active contours. IEEE Trans Image Process 17(11):2029–2039

    Article  Google Scholar 

  20. Lin L, Hedayat AS, Sinha B, Yang M (2002) Statistical methods in assessing agreement. J Am Stat Assoc 97(457):257–270

    Article  Google Scholar 

  21. Lee KW, Wood NB, Xu XY (2004) Ultrasound image-based computer model of a common carotid artery with a plaque. Med Eng Phys 26:823–840

    Article  PubMed  CAS  Google Scholar 

  22. Lee SW, Steinman DA (2007) On the relative importance of rheology for image-based CFD models of the carotid bifurcation. ASME J Biomech Eng 129(2):273–278

    Article  Google Scholar 

  23. Lee SW, Antiga L, Spence JD, Steinman DA (2008) Geometry of the carotid bifurcation predicts its exposure to disturbed flow. Stroke 39(8):2341–2347

    Article  PubMed  Google Scholar 

  24. Lee SW, Antiga L, Steinman DA (2009) Correlations among indicators of disturbed flow at the normal carotid bifurcation. J Biomech Eng 131(6):061013

    Article  PubMed  Google Scholar 

  25. Loizou CP, Pattichis CS, Pantziaris M, Tyllis T, Nicolaides A (2007) Snakes based segmentation of the common carotid artery intima media. Med Biol Eng Comput 45(1):35–49

    Article  PubMed  CAS  Google Scholar 

  26. Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042

    Article  PubMed  CAS  Google Scholar 

  27. Morbiducci U, Gallo D, Massai D, Consolo F, Ponzini R, Antiga L, Bignardi C, Deriu MA, Redaelli A (2010) Outflow conditions for image-based hemodynamic models of the carotid bifurcation: implication for indicators of abnormal flow. J Biomech Eng 132(9):091005

    Article  PubMed  Google Scholar 

  28. Morbiducci U, Gallo D, Massai D, Ponzini R, Deriu MA, Antiga L, Redaelli A, Montevecchi FM (2011) On the importance of blood rheology for bulk flow in hemodynamic models of the carotid bifurcation. J Biomech 44(13):2427–2438

    Article  PubMed  Google Scholar 

  29. Müller J, Sahni O, Li X, Jansen KE, Shephard MS, Taylor CA (2005) Anisotropic adaptive finite element method for modelling blood flow. Comput Methods Biomech Biomed Engin 8(5):295–305

    Article  PubMed  Google Scholar 

  30. Peiffer V, Sherwin SJ, Weinberg PD (2013) Computation in the rabbit aorta of a new metric—the transverse wall shear stress—to quantify the multidirectional character of disturbed blood flow. J Biomech 46(15):2651–2658

    Article  PubMed  PubMed Central  Google Scholar 

  31. Perktold K, Resch M, Florian H (1991) Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model. J Biomech Eng 113(4):464–475

    Article  PubMed  CAS  Google Scholar 

  32. Polak JF, Shemanski L, O’L’ary DH, Lefkowitz D, Price TR, Savage PJ, Brant WE, Reid C (1998) Hypoechoic plaque at US of the carotid artery: an independent risk factor for incident stroke in adults aged 65 years or older. Cardiovascular Health Study. Radiology 208(3):649–654

    Article  PubMed  CAS  Google Scholar 

  33. Santos A, Sousa L, Tavares J, Santos R, Castro P, Azevedo E (2012) Computer simulation of the carotid artery. Cerebrovasc Dis 33(suppl 1):77–77

    Google Scholar 

  34. Santos A, Santos R, Castro P, Azevedo E, Sousa L, Tavares J (2013) A novel automatic algorithm for the segmentation of the lumen of the carotid artery in ultrasound B-mode images. Expert Syst Appl 40(16):6570–6579

    Article  Google Scholar 

  35. Schäberle W (2004) Ultrasonography in vascular diagnosis. Springer, Berlin, Heidelberg

    Google Scholar 

  36. Seung EL, Lee SW, Fischerc PF, Bassiounyd HS, Lothe F (2008) Direct numerical simulation of transitional flow in a stenosed carotid bifurcation. J Biomech 41:2551–2561

    Article  Google Scholar 

  37. Sousa LC, Castro CF, António CAC, Chaves R (2011) Computational Techniques and Validation of Blood Flow Simulation. WSEAS TRANSACTIONS Biol Biomed 8(4):1109–9518

    Google Scholar 

  38. Sousa LC, Castro CF, António CAC, Chaves R (2012) Blood flow simulation and vascular reconstruction. J Biomech 45:2549–2555

    Article  PubMed  Google Scholar 

  39. Sousa LC, Castro CF, Antonio CAC (2012) Blood flow simulation and applications. In: Natal JRM., Tavares JMRS, Barbosa MP, Slade AP (eds) Technologies for medical sciences: lecture notes in computational vision and biomechanics. Springer, Netherlands, 1 p 67–8637

  40. Staikov IN, Nedeltchev K, Arnold M, Remonda L, Schroth G, Sturzenegger M, Herrmann C, Rivoir A, Mattle HP (2002) Duplex sonographic criteria for measuring carotid stenoses. J Clin Ultrasound 30(5):275–281

    Article  PubMed  Google Scholar 

  41. Stoner MC, Abbott WM, Wong DR, Hua HT, Lamuraglia GM, Kwolek CJ, Watkins MT, Agnihotri AK, Henderson WG, Khuri S, Cambria RP (2006) Defining the high-risk patient for carotid endarterectomy: an analysis of the prospective National Surgical Quality Improvement Program database. J Vasc Surg 43(2):285–295

    Article  PubMed  Google Scholar 

  42. Swillens A, De Santis G, Degroote J, Lovstakken L, Vierendeels J, Segers P (2012) Accuracy of carotid strain estimates from ultrasonic wall tracking: a study based on multiphysics simulations and In vivo data. IEEE Trans Med Imaging 31(1):131–138

    Article  PubMed  Google Scholar 

  43. Tang DL, Yang C, Mondal S, Liu F, Canton G, Hatsukami TS, Yuan C (2008) A negative correlation between human carotid atherosclerotic plaque progression and plaque wall stress: in Vivo MRI-based 2d/3d FSI models. J Biomech 41(4):727–736

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wasserman BA, Wityk RJ, Trout HH, Virmani R (2005) Low-grade carotid stenosis: looking beyond the lumen with MRI. Stroke 36(11):2504–2513

    Article  PubMed  Google Scholar 

  45. Womersley JR (1955) Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol 127(3):553–563

    PubMed  CAS  PubMed Central  Google Scholar 

  46. Zhang C, Xie S, Li S, Pu F, Deng X, Fan Y, Li D (2012) Flow patterns and wall shear stress distribution in human internal carotid arteries: the geometric effect on the risk for stenoses. J Biomech 45(1):83–89

    Article  PubMed  Google Scholar 

  47. Zhao SZ, Xu XY, Ariff B, Long Q, Stanton AV, Hughes AD, Thom SA (2002) Inter-individual variations in wall shear stress and mechanical stress distributions at the carotid artery bifurcation of healthy humans. J Biomech 35:1367–1377

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially done in the scope of project PTDC/SAU-BEB/102547/2008, “Blood flow simulation in arterial networks toward application at hospital,” financially supported by Fundação para a Ciência e a Tecnologia (FCT) in Portugal.

Conflict of interest

All authors hereby declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luísa C. Sousa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa, L.C., Castro, C.F., António, C.C. et al. Toward hemodynamic diagnosis of carotid artery stenosis based on ultrasound image data and computational modeling. Med Biol Eng Comput 52, 971–983 (2014). https://doi.org/10.1007/s11517-014-1197-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-014-1197-z

Keywords

Navigation