Skip to main content
Log in

Application of multiscale entropy in arterial waveform contour analysis in healthy and diabetic subjects

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

We applied multiscale entropy (MSE) to assess variation in crest time (CT), a parameter in arterial waveform analysis, in diagnosing patients with diabetes. Data on digital volume pulse were obtained from 93 individuals in three groups [Healthy young (Group 1, 20< age ≤40, n = 30), healthy upper-middle-aged (Group 2, age >40, n = 30), and diabetic (Group 3, n = 33) subjects]. Crest time, normalized crest time, crest time ratio (CTR), small- and large-scale MSE on CT [MSESS(CT) and MSELS(CT), respectively] were computed and correlated with anthropometric (i.e., body weight/height, waist circumference), hemodynamic (i.e., blood pressure), and biochemical parameters (i.e., serum triglyceride, high-density lipoprotein, fasting blood sugar, and glycosylated hemoglobin). The results demonstrated higher variability in CT in healthy subjects (Groups 1 and 2) compared with that in diabetic patients (Group 3) as reflected in significantly elevated MSESS(CT) and MSELS(CT) in the former (p < 0.003 and p < 0.001, respectively). MSELS(CT) also showed significant association with waist circumference and fasting blood sugar (i.e., two diagnostic criteria of metabolic syndrome) as well as glycosylated hemoglobin concentration. In conclusion, using MSE analysis for assessing CT variation successfully distinguished diabetic patients from healthy subjects. MSESS(CT) and MSELS(CT) therefore may serve as noninvasive tools for identifying subjects with diabetes and those at risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. AlSaleh A, Maniou Z, Lewis FJ, Hall WL, Sanders TA, O’Dell SD, Team MS (2014) Interaction between a CSK gene variant and fish oil intake influences blood pressure in healthy adults. J Nutr 144(3):267–272

    Article  CAS  PubMed  Google Scholar 

  2. Brillante DG, O’Sullivan AJ, Johnstone MT, Howes LG (2008) Evidence for functional expression of vascular angiotensin II type 2 receptors in patients with insulin resistance. Diabetes Obes Metab 10(2):143–150

    CAS  PubMed  Google Scholar 

  3. Buchman TG (2002) The community of the self. Nature 420(6912):246–251

    Article  CAS  PubMed  Google Scholar 

  4. Cheng D, Tsai S-J, Hong C-J, Yang AC (2009) Reduced physiological complexity in robust elderly adults with the APOE ε4 allele. PLoS One 4(11):e7733

    Article  PubMed Central  PubMed  Google Scholar 

  5. Costa M, Goldberger AL, Peng C-K (2005) Multiscale entropy analysis of biological signals. Phys Rev E 71(2):021906

    Article  Google Scholar 

  6. Costa M, Goldberger AL, Peng CK (2002) Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett 89(6):068102

    Article  PubMed  Google Scholar 

  7. Currens JH, Mc GJ, Khambatta RB, Gordon I (1955) The effect of intravenous protoveratrine on digital pulse volume and digital skin temperature in hypertensive patients. Circulation 11(3):440–446

    Article  CAS  PubMed  Google Scholar 

  8. Daskalopoulou SS, Athyros VG, Kolovou GD, Anagnostopoulou KK, Mikhailidis DP (2006) Definitions of metabolic syndrome: Where are we now? Curr Vasc Pharmacol 4(3):185–197

    Article  CAS  PubMed  Google Scholar 

  9. De Simone A, Kitchen C, Kwan AH, Sunde M, Dobson CM, Frenkel D (2012) Intrinsic disorder modulates protein self-assembly and aggregation. Proc Natl Acad Sci U S A 109(18):6951–6956

    Article  PubMed Central  PubMed  Google Scholar 

  10. Dillon JB, Hertzman AB (1941) The form of the volume pulse in the finger pad in health, arteriosclerosis, and hypertension. Am Heart J 21(2):172–190

    Article  Google Scholar 

  11. Ford ES, Giles WH, Dietz WH (2002) Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 287(3):356–359

    Article  PubMed  Google Scholar 

  12. Goldberger AL, Amaral LA, Hausdorff JM, Ivanov PC, Peng C-K, Stanley HE (2002) Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci USA 99(Suppl 1):2466–2472

    Article  PubMed Central  PubMed  Google Scholar 

  13. Gyawali P, Richards RS, Tinley P, Nwose EU (2014) Hemorheology, ankle brachial pressure index (ABPI) and toe brachial pressure index (TBPI) in metabolic syndrome. Microvasc Res 95:31–36

  14. Hertzman AB (1938) The blood supply of various skin areas as estimated by the photoelectric plethysmograph. Am J Physiol 124(2):328

    Google Scholar 

  15. Huff SE (1955) Observations on peripheral circulation in various dermatoses. AMA Arch Derm 71(5):575–578

    Article  CAS  PubMed  Google Scholar 

  16. Iguchi A, Yamakage H, Tochiya M, Muranaka K, Sasaki Y, Kono S, Shimatsu A, Satoh-Asahara N (2013) Effects of weight reduction therapy on obstructive sleep apnea syndrome and arterial stiffness in patients with obesity and metabolic syndrome. J Atheroscler Thromb 20(11):807–820

    Article  CAS  PubMed  Google Scholar 

  17. Jaryal AK, Selvaraj N, Santhosh J, Anand S, Deepak KK (2009) Monitoring of cardiovascular reactivity to cold stress using digital volume pulse characteristics in health and diabetes. J Clin Monit Comput 23(2):123–130

    Article  PubMed  Google Scholar 

  18. Millasseau SC, Ritter JM, Takazawa K, Chowienczyk PJ (2006) Contour analysis of the photoplethysmographic pulse measured at the finger. J Hypertens 24(8):1449–1456

    Article  CAS  PubMed  Google Scholar 

  19. Rambaran C, Chowienczyk P, Ritter J, Shah A, Wilks R, Forrester T, Kalra L (2007) The vascular effects of metabolic impairment clusters in subjects of different ethnicities. Atherosclerosis 192(2):354–362

    Article  CAS  PubMed  Google Scholar 

  20. Rogowicz-Frontczak A, Araszkiewicz A, Pilacinski S, Zozulinska-Ziolkiewicz D, Wykretowicz A, Wierusz-Wysocka B (2012) Carotid intima-media thickness and arterial stiffness in type 1 diabetic patients with and without microangiopathy. Arch Med Sci 8(3):484–490

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Santambrogio L, Bellomo G, Mercuri M, Paltriccia R, Ciuffetti G, Mannarino E (1991) Sympathetic vascular function in patients with central dysautonomia. J Neural Transm Suppl 33:111–114

  22. Scholze A, Burkert A, Mardanzai K, Suvd-Erdene S, Hausberg M, Zidek W, Tepel M (2007) Increased arterial vascular tone during the night in patients with essential hypertension. J Hum Hypertens 21(1):60–67

    Article  CAS  PubMed  Google Scholar 

  23. Suganthi L, Manivannan M, Kunwar BK, Joseph G, Danda D (2014) Morphological analysis of peripheral arterial signals in Takayasu’s arteritis. J Clin Monit Comput (in press)

  24. Tousoulis D, Plastiras A, Siasos G, Oikonomou E, Verveniotis A, Kokkou E, Maniatis K, Gouliopoulos N, Miliou A, Paraskevopoulos T, Stefanadis C (2014) Omega-3 PUFAs improved endothelial function and arterial stiffness with a parallel antiinflammatory effect in adults with metabolic syndrome. Atherosclerosis 232(1):10–16

    Article  CAS  PubMed  Google Scholar 

  25. Valencia J, Porta A, Vallverdu M, Claria F, Baranowski R, Orlowska-Baranowska E, Caminal P (2009) Refined multiscale entropy: application to 24-h holter recordings of heart period variability in healthy and aortic stenosis subjects. IEEE Trans Biomed Eng 56(9):2202–2213

    Article  PubMed  Google Scholar 

  26. Wang H, Liu J, Zhao H, Fu X, Shang G, Zhou Y, Yu X, Zhao X, Wang G, Shi H (2013) Arterial stiffness evaluation by cardio-ankle vascular index in hypertension and diabetes mellitus subjects. J Am Soc Hypertens 7(6):426–431

    Article  PubMed  Google Scholar 

  27. Wu H-T, Hsu P-C, Lin C-F, Wang H-J, Sun C-K, Liu A-B, Lo M-T, Tang C-J (2011) Multiscale entropy analysis of pulse wave velocity for assessing atherosclerosis in the aged and diabetic. IEEE Trans Biomed Eng 58(10):2978–2981

    Article  PubMed  Google Scholar 

  28. Wu H-T, Lee C-H, Liu A-B, Chung W-S, Tang C-J, Sun C-K, Yip H-K (2011) Arterial stiffness using radial arterial waveforms measured at the wrist as an indicator of diabetic control in the elderly. IEEE Trans Biomed Eng 58(2):243–252

    Article  PubMed  Google Scholar 

  29. Wu HT, Hsu PC, Sun CK, Wang HJ, Liu CC, Chen HR, Liu AB, Tang CJ, Lo MT (2013) Assessment of autonomic dysfunction in patients with type 2 diabetes using reactive hyperemia. J Theor Biol 330:9–17

    Article  PubMed  Google Scholar 

  30. Wu HT, Liu CC, Lin PH, Chung HM, Liu MC, Yip HK, Liu AB, Sun CK (2010) Novel application of parameters in waveform contour analysis for assessing arterial stiffness in aged and atherosclerotic subjects. Atherosclerosis 213(1):173–177

    Article  CAS  PubMed  Google Scholar 

  31. Wu HT, Lo MT, Chen GH, Sun CK, Chen JJ (2013) Novel application of a multiscale entropy index as a sensitive tool for detecting subtle vascular abnormalities in the aged and diabetic. Comput Math Methods Med 2013:645702

    PubMed Central  PubMed  Google Scholar 

  32. Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1(01):1–41

    Article  Google Scholar 

  33. Wu Z, Huang NE, Long SR, Peng C-K (2007) On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc Natl Acad Sci 104(38):14889–14894

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Yang AC, Wang SJ, Lai KL, Tsai CF, Yang CH, Hwang JP, Lo MT, Huang NE, Peng CK, Fuh JL (2013) Cognitive and neuropsychiatric correlates of EEG dynamic complexity in patients with Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 47:52–61

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by a research Grant from the National Science Council, Taiwan, R.O.C. (Grant No.: 102-2221-E-259-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheuk-Kwan Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, AB., Wu, HT., Liu, CW. et al. Application of multiscale entropy in arterial waveform contour analysis in healthy and diabetic subjects. Med Biol Eng Comput 53, 89–98 (2015). https://doi.org/10.1007/s11517-014-1220-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-014-1220-4

Keywords