Skip to main content

Advertisement

Log in

Efficient detection of wound-bed and peripheral skin with statistical colour models

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

A pressure ulcer is a clinical pathology of localised damage to the skin and underlying tissue caused by pressure, shear or friction. Reliable diagnosis supported by precise wound evaluation is crucial in order to success on treatment decisions. This paper presents a computer-vision approach to wound-area detection based on statistical colour models. Starting with a training set consisting of 113 real wound images, colour histogram models are created for four different tissue types. Back-projections of colour pixels on those histogram models are used, from a Bayesian perspective, to get an estimate of the posterior probability of a pixel to belong to any of those tissue classes. Performance measures obtained from contingency tables based on a gold standard of segmented images supplied by experts have been used for model selection. The resulting fitted model has been validated on a training set consisting of 322 wound images manually segmented and labelled by expert clinicians. The final fitted segmentation model shows robustness and gives high mean performance rates [(AUC: .9426 (SD .0563); accuracy: .8777 (SD .0799); F-score: 0.7389 (SD .1550); Cohen’s kappa: .6585 (SD .1787)] when segmenting significant wound areas that include healing tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The authors guarantee that the study from which this paper has been motivated has adhered to all ethical aspects that ensure the privacy of all personal information from the individuals who participated in the research. The Ethical Commission of the Health District of Málaga (Spain) authorised the study, and all the participants were informed in writing on their participation in the study.

  2. The CIELUV colour space was adopted by the International Commission on Illumination (CIE) in 1976.

  3. Since the original JPEG pictures were taken in nonlinear sRGB, the usual procedure for sRGB\(\rightarrow\)CIELUV conversion was followed: after inverting gamma, the images were first converted to CIE XYZ and then to CIELUV.

References

  1. Arifin MS, Kibria MG, Firoze A, Amin MA, Yan H (2012) Dermatological disease diagnosis using color-skin images. In: ICMLC, IEEE p 1675–1680. http://dblp.uni-trier.de/db/conf/icmlc/icmlc2012.html#ArifinKFAY12

  2. Azevedo-Marques P, Pereira S, Frade M, Rangayyan R (2013) Segmentation of dermatological ulcers using clustering of color components. Electrical and computer engineering (CCECE), 2013 26th annual IEEE Canadian conference on, pp 1–4. doi:10.1109/CCECE.2013.6567776

  3. Beeckman D, Schoonhoven L, Fletcher J, Furtado K, Gunningberg L, Heyman H, Lindholm C, Paquay L, Verdu J, Defloor T (2007) EPUAP classification system for pressure ulcers: European reliability study. J Adv Nurs 60(6):682–691

    Article  PubMed  Google Scholar 

  4. Ben-David A (2007) A lot of randomness is hiding in accuracy. Engineering Applications of Artificial Intelligence 20(7):875–885. doi:10.1016/j.engappai.2007.01.001. http://www.sciencedirect.com/science/article/pii/S0952197607000061

  5. Bradley A (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit 30(7):1145–1159

    Article  Google Scholar 

  6. Bradski G (2000) The OpenCV Library 25(11):120, 122–125. http://www.ddj.com/ftp/2000/2000_11/opencv.txt

  7. Bradski GR (1998) Computer vision face tracking for use in a perceptual user interface. Intel Technol J. http://opencv.jp/opencv-1.0.0_org/docs/papers/camshift.pdf

  8. Carreira-Perpinan M (2006) Acceleration strategies for Gaussian mean-shift image segmentation. In: Computer vision and pattern recognition, 2006 IEEE Computer Society Conference on, 1:1160–1167. doi:10.1109/CVPR.2006.44

  9. CIE (2004) Colorimetry (3rd edn) Tech Rep CIE 15:2004, Commission Internationale de l’Eclairage. CIE Central Bureau, Vienna. ISBN 3901906339

  10. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Analysis Machine Intell 24(5):603–619

    Article  Google Scholar 

  11. Cula O, Dana K, Murphy F, Rao B (2005) Skin texture modeling. Int J Comput Vis 62(1–2):97–119

    Article  Google Scholar 

  12. Drira F, Lebourgois F, Emptoz H (2008) A modified mean shift algorithm for efficient document image restoration. In: Damiani E, Yetongnon K, Schelkens P, Dipanda A, Legrand L, Chbeir R (eds) Signal processing for image enhancement and multimedia processing, multimedia systems and applications series, vol 31. Springer, US, pp 13–25. doi:10.1007/978-0-387-72500-0_2

    Chapter  Google Scholar 

  13. Edsberg LE (2007) Pressure ulcer tissue histology: an appraisal of current knowledge. Ostomy Wound Manag 53(10):40–49. http://www.o-wm.com/article/7934

  14. European Pressure Ulcer Advisory Panel, National Pressure Ulcer Advisory Panel (2009) Treatment of pressure ulcers: quick reference guide. National Pressure Ulcer Advisory Panel, Washington, DC

  15. European Pressure Ulcer Advisory Panel (EPUAP) (1999) Guidelines on treatment of pressure ulcers. EPUAP Rev 1:31–33

    Google Scholar 

  16. Gawlitta D, Li W, Oomens CWJ, Baaijens FPT, Bader DL, Bouten CVC (2007) The relative contributions of compression and hypoxia to development of muscle tissue damage: an in vitro study. Ann Biomed Eng 35(2):273–284

    Article  PubMed  Google Scholar 

  17. Gonzalez RC, Woods R (2002) Digital image processing, 2nd edn. Prentice Hall, New Jersey

    Google Scholar 

  18. Hao J, Li M, Tang F (2008) Adaptive segmentation of cerebrovascular tree in time-of-flight magnetic resonance angiography. Med Biol Eng Comput 46(1):75–83. doi:10.1007/s11517-007-0244-4

    Article  CAS  PubMed  Google Scholar 

  19. Ion A (2011) Towards improving medical image diagnosis. In: Telecommunications Forum (TELFOR), 2011 19th, pp 1187–1190. doi:10.1109/TELFOR.2011.6143762

  20. Jebara TS, Pentland A (1997) Parametrized structure from motion for 3D adaptive feedback tracking of faces. In: Proceedings of computer vision and pattern recognition. pp 144–150

  21. Jones E, Oliphant T, Peterson P et al. (2001) SciPy: open source scientific tools for Python. http://www.scipy.org/

  22. Jones MJ, Rehg JM (2002) Statistical color models with application to skin detection. Int J Comput Vis 46(1):81–96. http://www.cc.gatech.edu/~rehg/Papers/SkinDetect-IJCV-lowres.pdf

  23. Jones TD, Plassmann P (2000) An active contour model for measuring the area of leg ulcers. IEEE Trans Med Imaging 19(12):1202–1210. doi:10.1109/42.897812. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=897812&isnumber=19435

  24. Karkanis SA, Iakovidis DK, Maroulis DE, Karras DA, Tzivras M (2003) Computer-aided tumor detection in endoscopic video using color wavelet features. IEEE Trans Inf Technol Biomed 7(3):141–152

    Article  PubMed  Google Scholar 

  25. Kjeldsen R, Kender JR (1996) Finding skin in color images. In: Automatic face and gesture recognition, 1996, proceedings of the second international conference on. pp 312–317. doi:10.1109/AFGR.1996.557283

  26. Kosmopoulos D, Tzevelekou F (2007) Automated pressure ulcer lesion diagnosis for telemedicine systems. IEEE Eng Med Biol 26(5):18–22. doi:10.1109/EMB.2007.901786. http://ieeexplore.ieee.org/iel5/51/4303486/04312663.pdf?tp=&isnumber=4303486&arnumber=4312663&punumber=51

  27. Landi F, Onder G, Russo A, Bernabei R (2007) Pressure ulcer and mortality in frail elderly people living in community. Arch Gerontol Geriatr 44(Supplement 1):217–223. doi:10.1016/j.archger.2007.01.030. http://www.sciencedirect.com/science/article/B6T4H-4N3M3DN-13/2/e3d4d12edc612e2bd418df9cecfd3521

  28. Laplaud AL, Blaizot X, Gaillard C, Morice A, Lebreuilly I, Clément C, Parienti JJ, Dompmartin A (2010) Wound debridement: comparative reliability of three methods for measuring fibrin percentage in chronic wounds. Wound Repair Regen 18(1):13–20. doi:10.1111/j.1524-475X.2009.00555.x

    Article  PubMed  Google Scholar 

  29. Loizou CP, Kasparis T, Mitsi O, Polyviou M (2012) Evaluation of wound healing process based on texture analysis. In: BIBE IEEE computer society, pp 709–714. http://dblp.uni-trier.de/db/conf/bibe/bibe2012.html#LoizouKMP12

  30. Mukherjee R, Manohar DD, Das DK, Achar A, Mitra A, Chakraborty C (2014) Automated tissue classification framework for reproducible chronic wound assessment. BioMed Res Int, Article ID 851,582. doi:10.1155/2014/851582

  31. National Pressure Ulcer Advisory Panel Board of Directors (2001) Pressure ulcers in America: prevalence, incidence, and implications for the future: an executive summary of the National Pressure Ulcer Advisory Panel monograph. Adv Skin Wound Care 14(4):208–215

  32. Papazoglou ES, Zubkov L, Mao X, Neidrauer M, Rannou N, Weingarten MS (2010) Image analysis of chronic wounds for determining the surface area. Wound Repair Regen 18(4):349–358

    Article  PubMed  Google Scholar 

  33. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  34. Rijsbergen CJV (1979) Information retrieval, 2nd edn. Butterworth–Heinemann. http://www.dcs.gla.ac.uk/Keith/Preface.html

  35. Salem S, Salem N, Nandi A (2007) Segmentation of retinal blood vessels using a novel clustering algorithm (RACAL) with a partial supervision strategy. Med Biol Eng Comput 45(3):261–273. doi:10.1007/s11517-006-0141-2

    Article  PubMed  Google Scholar 

  36. Schiele B, Waibel A (1995) Gaze tracking based on face-color. In: International workshop on automatic face- and Gesture-recognition (IWAFGR). Zurich, Switzerland, pp 344–349

  37. Sirotkovic J, Dujmic H, Papic V (2013) Accelerating mean shift image segmentation with IFGT on massively parallel GPU. In: Information communication technology electronics microelectronics (MIPRO), 2013 36th international convention on. pp 279–285

  38. Stanescu L, Burdescu DD, Brezovan M (2011) A comparative study of some methods for color medical images segmentation. EURASIP J Adv Sig Proc 2011:128. http://dblp.uni-trier.de/db/journals/ejasp/ejasp2011.html#StanescuBB11; doi:10.1186/1687-6180-2011-128; http://www.bibsonomy.org/bibtex/2aadb18d57e42a5c328849a1530dd7ba0/dblp

  39. Stratton R, Green C, Elia M (2003) Disease-related malnutrition: an evidence-based approach to treatment. CABI Publishing, Wallingford

    Google Scholar 

  40. Sussman C, Bates-Jensen B (eds) (2001) Wound care: a collaborative practice manual for physical therapists and nurses. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  41. Sutor S, Röhr R, Pujolle G, Reda R (2008) Efficient mean shift clustering using exponential integral kernels. Int Sci Ind 2(10):324–328. http://waset.org/Publications?p=22

  42. Swain M, Ballard D (1990) Indexing via color histograms. In: Computer Vision, 1990. Proceedings, third international conference on. pp 390–393. doi:10.1109/ICCV.1990.139558

  43. Tafavogh S, Navarro K, Catchpoole D, Kennedy P (2013) Non-parametric and integrated framework for segmenting and counting neuroblastic cells within neuroblastoma tumor images. Med Biol Eng Comput 51(6):645–655. doi:10.1007/s11517-013-1034-9

    Article  PubMed  Google Scholar 

  44. Tsuji S, Ichioka S, Sekiya N, Nakatsuka T (2005) Analysis of ischemia-reperfusion injury in a microcirculatory model of pressure ulcers. Wound Repair Regen 13(2):209–215

    Article  PubMed  Google Scholar 

  45. Veredas F, Mesa H, Morente L (2010) Binary tissue classification on wound images with neural networks and bayesian classifiers. IEEE Trans Med Imaging 29(2):410–427

    Article  PubMed  Google Scholar 

  46. Vieira P, Ramos J, Barbosa D, Roupar D, Silva C, Correia H, Lima C (2012) Segmentation of small bowel tumor tissue in capsule endoscopy images by using the MAP algorithm. In: Engineering in Medicine and Biology Society (EMBC), 2012 Annual international conference of the IEEE. pp 4010–4013. doi:10.1109/EMBC.2012.6346846

  47. Wannous H, Lucas Y, Treuillet S (2011) Enhanced assessment of the wound-healing process by accurate multiview tissue classification. Med Imaging IEEE Trans 30(2):315–326. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5582291

  48. Wannous H, Treuillet S, Lucas Y (2010) Robust tissue classification for reproducible wound assessment in telemedicine environments. J Electr Imaging 19(2):023,002–023,002

    Article  Google Scholar 

  49. Xiao C, Liu M (2010) Efficient mean-shift clustering using Gaussian KD-tree. Comput Graph Forum 29(7):2065–2073. doi:10.1111/j.1467-8659.2010.01793.x

    Article  Google Scholar 

  50. Yang C, Duraiswami R, Davis L (2005) Efficient mean-shift tracking via a new similarity measure. In: Computer vision and pattern recognition, 2005. CVPR 2005. IEEE Computer society conference on, vol 1, pp 176–183 doi:10.1109/CVPR.2005.139

  51. Yang C, Duraiswami R, DeMenthon D, Davis L (2003) Mean-shift analysis using Quasi–Newton methods. In: International conference on image processing, vol. 2, pp II-447-50 vol. 3. doi:10.1109/ICIP.2003.1246713. http://ieeexplore.ieee.org/iel5/8824/27931/01246713.pdf?tp=&isnumber=27931&arnumber=1246713&punumber=8824

  52. Yang J, Lu W, Waibel A (1997) Skin-color modeling and adaptation. In: Chin R, Pong TC (eds) Computer vision - ACCV’98, lecture notes in computer science, vol 1352. Springer, Berlin, Heidelberg, pp 687–694. doi:10.1007/3-540-63931-4_278

    Google Scholar 

Download references

Acknowledgments

This research has been funded by Consejería de Salud y Bienestar Social, Servicio Andaluz de Salud, Junta de Andalucía, project PI-0027/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Veredas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veredas, F.J., Mesa, H. & Morente, L. Efficient detection of wound-bed and peripheral skin with statistical colour models. Med Biol Eng Comput 53, 345–359 (2015). https://doi.org/10.1007/s11517-014-1240-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-014-1240-0

Keywords