Skip to main content

Advertisement

Log in

Evaluation of short-term predictors of glucose concentration in type 1 diabetes combining feature ranking with regression models

  • Special Issue - Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Glucose concentration in type 1 diabetes is a function of biological and environmental factors which present high inter-patient variability. The objective of this study is to evaluate a number of features, which are extracted from medical and lifestyle self-monitoring data, with respect to their ability to predict the short-term subcutaneous (s.c.) glucose concentration of an individual. Random forests (RF) and RReliefF algorithms are first employed to rank the candidate feature set. Then, a forward selection procedure follows to build a glucose predictive model, where features are sequentially added to it in decreasing order of importance. Predictions are performed using support vector regression or Gaussian processes. The proposed method is validated on a dataset of 15 type diabetics in real-life conditions. The s.c. glucose profile along with time of the day and plasma insulin concentration are systematically highly ranked, while the effect of food intake and physical activity varies considerably among patients. Moreover, the average prediction error converges in less than d/2 iterations (d is the number of features). Our results suggest that RF and RReliefF can find the most informative features and can be successfully used to customize the input of glucose models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abu-Rmileh A, Garcia-Gabin W, Zambrano D (2010) A robust sliding mode controller with internal model for closed-loop artificial pancreas. Med Biol Eng Comput 48(12):1191–1201. doi:10.1007/s11517-010-0665-3

    Article  PubMed  Google Scholar 

  2. Ambroise C, McLachlan GJ (2002) Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Nat Acad Sci USA 99(10):6562–6566. doi:10.1073/pnas.102102699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. American Diabetes A (2014) Standards of medical care in diabetes-2014. Diabetes Care 37(Suppl 1):S14–80. doi:10.2337/dc14-S014

    Article  Google Scholar 

  4. Bergenstal RM, Klonoff DC, Garg SK, Bode BW, Meredith M, Slover RH, Ahmann AJ, Welsh JB, Lee SW, Kaufman FR, Group AI-HS (2013) Threshold-based insulin-pump interruption for reduction of hypoglycemia. New Engl J Med 369(3):224–232. doi:10.1056/NEJMoa1303576

    Article  CAS  PubMed  Google Scholar 

  5. Breiman L (2001) Random forests. Mach Learn 45(1):5–32. doi:10.1023/A:1010933404324

    Article  Google Scholar 

  6. Buckingham B, Cameron F, Calhoun P, Maahs DM, Wilson DM, Chase HP, Bequette BW, Lum J, Sibayan J, Beck RW, Kollman C (2013) Outpatient safety assessment of an in-home predictive low-glucose suspend system with type 1 diabetes subjects at elevated risk of nocturnal hypoglycemia. Diabetes Technol Ther 15(8):622–627. doi:10.1089/dia.2013.0040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Cryer PE (2008) The barrier of hypoglycemia in diabetes. Diabetes 57(12):3169–3176. doi:10.2337/db08-1084

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Daskalaki E, Norgaard K, Zuger T, Prountzou A, Diem P, Mougiakakou S (2013) An early warning system for hypoglycemic/hyperglycemic events based on fusion of adaptive prediction models. J Diabetes Sci Technol 7(3):689–698

    Article  PubMed Central  PubMed  Google Scholar 

  9. Derouich M, Boutayeb A (2002) The effect of physical exercise on the dynamics of glucose and insulin. J Biomech 35(7):911–917

    Article  CAS  PubMed  Google Scholar 

  10. Di Camillo B, Sanavia T, Martini M, Jurman G, Sambo F, Barla A, Squillario M, Furlanello C, Toffolo G, Cobelli C (2012) Effect of size and heterogeneity of samples on biomarker discovery: synthetic and real data assessment. PLoS ONE. doi:10.1371/journal.pone.0032200

    Google Scholar 

  11. Dua P, Doyle FJ 3rd, Pistikopoulos EN (2009) Multi-objective blood glucose control for type 1 diabetes. Med Biol Eng Comput 47(3):343–352. doi:10.1007/s11517-009-0453-0

    Article  PubMed  Google Scholar 

  12. Eren-Oruklu M, Cinar A, Quinn L (2010) Hypoglycemia prediction with subject-specific recursive time-series models. J Diabetes Sci Technol 4(1):25–33

    Article  PubMed Central  PubMed  Google Scholar 

  13. Eren-Oruklu M, Cinar A, Rollins DK, Quinn L (2012) Adaptive System Identification for estimating future glucose concentrations and hypoglycemia alarms. Automatica: J IFAC 48(8):1892–1897. doi:10.1016/j.automatica.2012.05.076

    Article  Google Scholar 

  14. Froy O (2010) Metabolism and circadian rhythms—implications for obesity. Endocr Rev 31(1):1–24. doi:10.1210/er.2009-0014

    Article  CAS  PubMed  Google Scholar 

  15. Furlanello C, Serafini M, Merler S, Jurman G (2003) Entropy-based gene ranking without selection bias for the predictive classification of microarray data. BMC Bioinform. doi:10.1186/1471-2105-4-54

    Google Scholar 

  16. Gani A, Gribok AV, Rajaraman S, Ward WK, Reifman J (2009) Predicting subcutaneous glucose concentration in humans: data-driven glucose modeling. IEEE Trans Bio-Med Eng 56(2):246–254. doi:10.1109/TBME.2008.2005937

    Article  Google Scholar 

  17. Georga E, Protopappas V, Guillen A, Fico G, Ardigo D, Arredondo MT, Exarchos TP, Polyzos D, Fotiadis DI (2009) Data mining for blood glucose prediction and knowledge discovery in diabetic patients: the METABO diabetes modeling and management system. In: Conference proceedings: annual international conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference 2009, pp 5633–5636. doi:10.1109/IEMBS.2009.5333635

  18. Georga E, Protopappas VC, Ardigo D, Marina M, Zavaroni I, Polyzos D, Fotiadis D (2012) Multivariate prediction of subcutaneous glucose concentration in type 1 diabetes patients based on support vector regression. IEEE J Biomed Health Inform. doi:10.1109/TITB.2012.2219876

    PubMed  Google Scholar 

  19. Georga EI, Protopappas VC, Ardigo D, Polyzos D, Fotiadis DI (2013) A glucose model based on support vector regression for the prediction of hypoglycemic events under free-living conditions. Diabetes Technol Ther 15(8):634–643. doi:10.1089/dia.2012.0285

    Article  CAS  PubMed  Google Scholar 

  20. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1–3):389–422. doi:10.1023/A:1012487302797

    Article  Google Scholar 

  21. Huang W, Ramsey KM, Marcheva B, Bass J (2011) Circadian rhythms, sleep, and metabolism. J Clin Investig 121(6):2133–2141. doi:10.1172/JCI46043

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Hughes CS, Patek SD, Breton MD, Kovatchev BP (2010) Hypoglycemia prevention via pump attenuation and red–yellow–green “traffic” lights using continuous glucose monitoring and insulin pump data. J Diabetes Sci Technol 4(5):1146–1155

    Article  PubMed Central  PubMed  Google Scholar 

  23. Kovatchev B, Clarke W (2008) Peculiarities of the continuous glucose monitoring data stream and their impact on developing closed-loop control technology. J Diabetes Sci Technol 2(1):158–163

    Article  PubMed Central  PubMed  Google Scholar 

  24. Krzanowski WJ (1993) Discriminant-analysis and statistical pattern-recognition—Mclachlan, Gj. J Classif 10(1):128–130

    Article  Google Scholar 

  25. Lehmann ED, Deutsch T (1992) A physiological model of glucose-insulin interaction in type 1 diabetes mellitus. J Biomed Eng 14(3):235–242

    Article  CAS  PubMed  Google Scholar 

  26. Miles PD, Levisetti M, Reichart D, Khoursheed M, Moossa AR, Olefsky JM (1995) Kinetics of insulin action in vivo. Identification of rate-limiting steps. Diabetes 44(8):947–953

    Article  CAS  PubMed  Google Scholar 

  27. Mougiakakou SG, Bartsocas CS, Bozas E, Chaniotakis N, Iliopoulou D, Kouris I, Pavlopoulos S, Prountzou A, Skevofilakas M, Tsoukalis A, Varotsis K, Vazeou A, Zarkogianni K, Nikita KS (2010) SMARTDIAB: a communication and information technology approach for the intelligent monitoring, management and follow-up of type 1 diabetes patients. IEEE Trans Inform Technol Biomed: Publ IEEE Eng Med Biol Soc 14(3):622–633. doi:10.1109/TITB.2009.2039711

    Article  Google Scholar 

  28. Perez-Gandia C, Facchinetti A, Sparacino G, Cobelli C, Gomez EJ, Rigla M, de Leiva A, Hernando ME (2010) Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring. Diabetes Technol Ther 12(1):81–88. doi:10.1089/dia.2009.0076

    Article  CAS  PubMed  Google Scholar 

  29. Phillip M, Battelino T, Atlas E, Kordonouri O, Bratina N, Miller S, Biester T, Avbelj Stefanija M, Muller I, Nimri R, Danne T (2013) Nocturnal glucose control with an artificial pancreas at a diabetes camp. N Engl J Med 368(9):824–833. doi:10.1056/NEJMoa1206881

    Article  CAS  PubMed  Google Scholar 

  30. Pickup JC (2012) Insulin-pump therapy for type 1 diabetes mellitus. New Engl J Med 366(17):1616–1624. doi:10.1056/NEJMct1113948

    Article  CAS  PubMed  Google Scholar 

  31. Rasmussen CE, Nickisch H (2010) Gaussian processes for machine learning (GPML) toolbox. J Mach Learn Res 11:3011–3015

    Google Scholar 

  32. Rasmussen MA, Bro R (2012) A tutorial on the Lasso approach to sparse modeling. Chemometr Intell Lab 119:21–31. doi:10.1016/j.chemolab.2012.10.003

    Article  CAS  Google Scholar 

  33. Reifman J, Rajaraman S, Gribok A, Ward WK (2007) Predictive monitoring for improved management of glucose levels. J Diabetes Sci Technol 1(4):478–486

    Article  PubMed Central  PubMed  Google Scholar 

  34. Robnik-Sikonja M, Kononenko I (2003) Theoretical and empirical analysis of ReliefF and RReliefF. Mach Learn 53(1–2):23–69. doi:10.1023/A:1025667309714

    Article  Google Scholar 

  35. Roy A, Parker RS (2007) Dynamic modeling of exercise effects on plasma glucose and insulin levels. J Diabetes Sci Technol 1(3):338–347

    Article  PubMed Central  PubMed  Google Scholar 

  36. Smola AJ, Scholkopf B (2004) A tutorial on support vector regression. Stat Comput 14(3):199–222. doi:10.1023/B:Stco.0000035301.49549.88

    Article  Google Scholar 

  37. Sparacino G, Zanderigo F, Corazza S, Maran A, Facchinetti A, Cobelli C (2007) Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series. IEEE T Bio-Med Eng 54(5):931–937. doi:10.1109/Tbme.2006.889774

    Article  Google Scholar 

  38. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359. doi:10.1023/A:1008202821328

    Article  Google Scholar 

  39. Strobl C, Malley J, Tutz G (2009) An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychol Methods 14(4):323–348. doi:10.1037/a0016973

    Article  PubMed Central  PubMed  Google Scholar 

  40. Tarin C, Teufel E, Pico J, Bondia J, Pfleiderer HJ (2005) Comprehensive pharmacokinetic model of insulin Glargine and other insulin formulations. IEEE Trans Bio-Med Eng 52(12):1994–2005. doi:10.1109/TBME.2005.857681

    Article  CAS  Google Scholar 

  41. Turksoy K, Bayrak ES, Quinn L, Littlejohn E, Rollins D, Cinar A (2013) Hypoglycemia early alarm systems based on multivariable models. Ind Eng Chem Res. doi:10.1021/ie3034015

    PubMed Central  PubMed  Google Scholar 

  42. Turksoy K, Quinn L, Littlejohn E, Cinar A (2014) Multivariable adaptive identification and control for artificial pancreas systems. IEEE Trans Bio-Med Eng 61(3):883–891. doi:10.1109/TBME.2013.2291777

    Article  Google Scholar 

  43. Yamaguchi M, Kaseda C, Yamazaki K, Kobayashi M (2006) Prediction of blood glucose level of type 1 diabetics using response surface methodology and data mining. Med Biol Eng Comput 44(6):451–457. doi:10.1007/s11517-006-0049-x

    Article  CAS  PubMed  Google Scholar 

  44. Zarkogianni K, Vazeou A, Mougiakakou SG, Prountzou A, Nikita KS (2011) An insulin infusion advisory system based on autotuning nonlinear model-predictive control. IEEE Trans Bio-Med Eng 58(9):2467–2477. doi:10.1109/TBME.2011.2157823

    Article  Google Scholar 

  45. Zecchin C, Facchinetti A, Sparacino G, Cobelli C (2013) Reduction of number and duration of hypoglycemic events by glucose prediction methods: a proof-of-concept in silico study. Diabetes Technol Ther 15(1):66–77. doi:10.1089/dia.2012.0208

    Article  CAS  PubMed  Google Scholar 

  46. Zecchin C, Facchinetti A, Sparacino G, Cobelli C (2014) Jump neural network for online short-time prediction of blood glucose from continuous monitoring sensors and meal information. Comput Methods Programs Biomed 113(1):144–152. doi:10.1016/j.cmpb.2013.09.016

    Article  CAS  PubMed  Google Scholar 

  47. Zecchin C, Facchinetti A, Sparacino G, De Nicolao G, Cobelli C (2012) Neural network incorporating meal information improves accuracy of short-time prediction of glucose concentration. IEEE Trans Bio-Med Eng 59(6):1550–1560. doi:10.1109/TBME.2012.2188893

    Article  Google Scholar 

  48. Zhao C, Dassau E, Jovanovic L, Zisser HC, Doyle FJ 3rd, Seborg DE (2012) Predicting subcutaneous glucose concentration using a latent-variable-based statistical method for type 1 diabetes mellitus. J Diabetes Sci Technol 6(3):617–633

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the research project “Development of an Information Environment for Diabetes Data Analysis and New Knowledge Mining” that has been co-financed by the European Union [European Regional Development Fund (ERDF)] and Greek national funds through the Operational Program “THESSALY-MAINLAND GREECE AND EPIRUS-2007-2013” of the National Strategic Reference Framework (NSRF 2007–2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios I. Fotiadis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georga, E.I., Protopappas, V.C., Polyzos, D. et al. Evaluation of short-term predictors of glucose concentration in type 1 diabetes combining feature ranking with regression models. Med Biol Eng Comput 53, 1305–1318 (2015). https://doi.org/10.1007/s11517-015-1263-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1263-1

Keywords