Skip to main content

Advertisement

Log in

Global sensitivity analysis of the joint kinematics during gait to the parameters of a lower limb multi-body model

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Sensitivity analysis is a typical part of biomechanical models evaluation. For lower limb multi-body models, sensitivity analyses have been mainly performed on musculoskeletal parameters, more rarely on the parameters of the joint models. This study deals with a global sensitivity analysis achieved on a lower limb multi-body model that introduces anatomical constraints at the ankle, tibiofemoral, and patellofemoral joints. The aim of the study was to take into account the uncertainty of parameters (e.g. 2.5 cm on the positions of the skin markers embedded in the segments, 5° on the orientation of hinge axis, 2.5 mm on the origin and insertion of ligaments) using statistical distributions and propagate it through a multi-body optimisation method used for the computation of joint kinematics from skin markers during gait. This will allow us to identify the most influential parameters on the minimum of the objective function of the multi-body optimisation (i.e. the sum of the squared distances between measured and model-determined skin marker positions) and on the joint angles and displacements. To quantify this influence, a Fourier-based algorithm of global sensitivity analysis coupled with a Latin hypercube sampling is used. This sensitivity analysis shows that some parameters of the motor constraints, that is to say the distances between measured and model-determined skin marker positions, and the kinematic constraints are highly influencing the joint kinematics obtained from the lower limb multi-body model, for example, positions of the skin markers embedded in the shank and pelvis, parameters of the patellofemoral hinge axis, and parameters of the ankle and tibiofemoral ligaments. The resulting standard deviations on the joint angles and displacements reach 36° and 12 mm. Therefore, personalisation, customisation or identification of these most sensitive parameters of the lower limb multi-body models may be considered as essential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ackland DC, Lin YC, Pandy MG (2012) Sensitivity of model predictions of muscle function to changes in moment arms and muscle-tendon properties: a Monte-Carlo analysis. J Biomech 45:1463–1471

    Article  PubMed  Google Scholar 

  2. Andersen MS, Benoit DL, Damsgaard M, Ramsey DK, Rasmussen J (2010) Do kinematic models reduce the effects of soft tissue artefacts in skin marker-based motion analysis? An in vivo study of knee kinematics. J Biomech 43:268–273

    Article  PubMed  Google Scholar 

  3. Andersen MS, Damsgaard M, MacWilliams B, Rasmussen J (2010) A computationally efficient optimisation-based method for parameter identification of kinematically determinate and over-determinate biomechanical systems. Comput Methods Biomech Biomed Eng 13:171–183

    Article  CAS  Google Scholar 

  4. Anderson AE, Ellis BJ, Weiss JA (2007) Verification, validation and sensitivity studies in computational biomechanics. Comput Methods Biomech Biomed Eng 10:171–184

    Article  Google Scholar 

  5. Ascani D, Mazza C, De Lollis A, Bernardoni M, Viceconti M (2015) A procedure to estimate the origins and the insertions of the knee ligaments from computed tomography images. J Biomech 48:233–237

    Article  PubMed  Google Scholar 

  6. Bartels W, Demol J, Gelaude F, Jonkers I, Vander Sloten J (2015) Computed tomography-based joint locations affect calculation of joint moments during gait when compared to scaling approaches. Comput Methods Biomech Biomed Eng 18:1238–1251

    Article  Google Scholar 

  7. Brand RA, Pedersen DR, Friederich JA (1986) The sensitivity of muscle force predictions to changes in physiologic cross-sectional area. J Biomech 19:589–596

    Article  CAS  PubMed  Google Scholar 

  8. Carbone V, van der Krogt MM, Koopman HF, Verdonschot N (2012) Sensitivity of subject-specific models to errors in musculo-skeletal geometry. J Biomech 45:2476–2480

    Article  CAS  PubMed  Google Scholar 

  9. Cleather DJ, Bull AM (2012) The development of lower limb musculoskeletal models with clinical relevance is dependent upon the fidelity of the mathematical description of the lower limb. Part 2: patient-specific geometry. Proc IME H J Eng Med 226:133–145

    Article  Google Scholar 

  10. Cleather DJ, Bull AMJ (2010) Lower-extremity musculoskeletal geometry affects the calculation of patellofemoral forces in vertical jumping and weightlifting. Proc IME H J Eng Med 224:1073–1083

    Article  CAS  Google Scholar 

  11. Cleather DJ, Bull AMJ (2011) Knee and hip joint forces—sensitivity to the degrees of freedom classification at the knee. Proc IME H J Eng Med 225:621–626

    Article  CAS  Google Scholar 

  12. Clement J, Hagemeister N, Dumas R, Kanhonou M, de Guise JA (2014) Influence of biomechanical multi-joint models used in global optimisation to estimate healthy and osteoarthritis knee kinematics. Comput Methods Biomech Biomed Eng 17(Suppl 1):76–77

    Article  Google Scholar 

  13. Cole GK, Nigg BM, Ronsky JL, Yeadon MR (1993) Application of the joint coordinate system to three-dimensional joint attitude and movement representation: a standardization proposal. J Biomech Eng 115:344–349

    Article  CAS  PubMed  Google Scholar 

  14. Dao TT, Marin F, Pouletaut P, Charleux F, Aufaure P, Ho Ba Tho MC (2012) Estimation of accuracy of patient-specific musculoskeletal modelling: case study on a post polio residual paralysis subject. Comput Methods Biomech Biomed Eng 15:745–751

    Article  CAS  Google Scholar 

  15. De Groote F, Van Campen A, Jonkers I, De Schutter J (2010) Sensitivity of dynamic simulations of gait and dynamometer experiments to hill muscle model parameters of knee flexors and extensors. J Biomech 43:1876–1883

    Article  PubMed  Google Scholar 

  16. Della Croce U, Leardini A, Chiari L, Cappozzo A (2005) Human movement analysis using stereophotogrammetry. Part 4: assessment of anatomical landmark misplacement and its effects on joint kinematics. Gait Posture 21:226–237

    Article  PubMed  Google Scholar 

  17. Delp SL, Maloney W (1993) Effects of hip center location on the moment-generating capacity of the muscles. J Biomech 26:485–499

    Article  CAS  PubMed  Google Scholar 

  18. Di Gregorio R, Parenti-Castelli V, O’Connor JJ, Leardini A (2007) Mathematical models of passive motion at the human ankle joint by equivalent spatial parallel mechanisms. Med Biol Eng Comput 45:305–313

    Article  PubMed  Google Scholar 

  19. Dumas R, Cheze L (2007) 3D inverse dynamics in non-orthonormal segment coordinate system. Med Biol Eng Comput 45:315–322

    Article  CAS  PubMed  Google Scholar 

  20. Dumas R, Moissenet F, Gasparutto X, Cheze L (2012) Influence of joint models on lower-limb musculo-tendon forces and three-dimensional joint reaction forces during gait. Proc IME H J Eng Med 226:146–160

    Article  Google Scholar 

  21. Dumas R, Robert T, Pomero V, Cheze L (2012) Joint and segment coordinate systems revisited. Comput Methods Biomech Biomed Eng 15:183–185

    Article  Google Scholar 

  22. Duprey S, Cheze L, Dumas R (2010) Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization. J Biomech 43:2858–2862

    Article  PubMed  Google Scholar 

  23. Ehrig RM, Taylor WR, Duda GN, Heller MO (2007) A survey of formal methods for determining functional joint axes. J Biomech 40:2150–2157

    Article  PubMed  Google Scholar 

  24. Fantozzi S, Stagni R, Cappello A, Leardini A (2005) Effect of different inertial parameter sets on joint moment calculation during stair ascending and descending. Med Eng Phys 27:537–541

    Article  PubMed  Google Scholar 

  25. Feikes JD, O’Connor JJ, Zavatsky AB (2003) A constraint-based approach to modelling the mobility of the human knee joint. J Biomech 36:125–129

    Article  CAS  PubMed  Google Scholar 

  26. Fregly BJ, Boninger ML, Reinkensmeyer DJ (2012) Personalized neuromusculoskeletal modeling to improve treatment of mobility impairments: a perspective from European research sites. J Neuroeng Rehabil 9:18

    Article  PubMed Central  PubMed  Google Scholar 

  27. Gasparutto X, Sancisi N, Jacquelin E, Parenti-Castelli V, Dumas R (2015) Validation of a multi-body optimization with knee kinematic models including ligament constraints. J Biomech: (in press)

  28. Gerus P, Sartori M, Besier TF, Fregly BJ, Delp SL, Banks SA, Pandy MG, D’Lima DD, Lloyd DG (2013) Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces. J Biomech 46:2778–2786

    Article  PubMed Central  PubMed  Google Scholar 

  29. Glitsch U, Baumann W (1997) The three-dimensional determination of internal loads in the lower extremity. J Biomech 30:1123–1131

    Article  CAS  PubMed  Google Scholar 

  30. Gomes GT, Van Cauter S, De Beule M, Vigneron L, Pattyn C, Audenaert EA (2013) Patient-specific modelling in orthopedics: from image to surgery. Biomed Imaging Comput Model Biomech 4:109–129

    Article  Google Scholar 

  31. Groen BE, Geurts M, Nienhuis B, Duysens J (2012) Sensitivity of the OLGA and VCM models to erroneous marker placement: effects on 3D-gait kinematics. Gait Posture 35:517–521

    Article  CAS  PubMed  Google Scholar 

  32. Heller MO, Taylor WR, Perka C, Duda GN (2003) The influence of alignment on the musculo-skeletal loading conditions at the knee. Langenbeck’s Arch Surg 388:291–297

    Article  Google Scholar 

  33. Langenderfer JE, Laz PJ, Petrella AJ, Rullkoetter PJ (2008) An efficient probabilistic methodology for incorporating uncertainty in body segment parameters and anatomical landmarks in joint loadings estimated from inverse dynamics. J Biomech Eng 130:014502

    Article  PubMed  Google Scholar 

  34. Laz PJ, Browne M (2010) A review of probabilistic analysis in orthopaedic biomechanics. Proc IME H J Eng Med 224:927–943

    Article  CAS  Google Scholar 

  35. Leardini A, Chiari L, Della Croce U, Cappozzo A (2005) Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation. Gait Posture 21:212–225

    Article  PubMed  Google Scholar 

  36. Lee KM, Guo J (2010) Kinematic and dynamic analysis of an anatomically based knee joint. J Biomech 43:1231–1236

    Article  PubMed  Google Scholar 

  37. Li K, Zheng L, Tashman S, Zhang X (2012) The inaccuracy of surface-measured model-derived tibiofemoral kinematics. J Biomech 45:2719–2723

    Article  PubMed Central  PubMed  Google Scholar 

  38. Lund ME, de Zee M, Andersen MS, Rasmussen J (2012) On validation of multibody musculoskeletal models. Proc IME H J Eng Med 226:82–94

    Article  Google Scholar 

  39. Martelli S, Valente G, Viceconti M, Taddei F (2015) Sensitivity of a subject-specific musculoskeletal model to the uncertainties on the joint axes location. Comput Methods Biomech Biomed Eng 18:1555–1563

    Article  Google Scholar 

  40. Moissenet F, Cheze L, Dumas R (2012) Anatomical kinematic constraints: consequences on musculo-tendon forces and joint reactions. Multibody Syst Dyn 28:125–141

    Article  Google Scholar 

  41. Mokhtarzadeh H, Perraton L, Fok L, Munoz MA, Clark R, Pivonka P, Bryant AL (2014) A comparison of optimisation methods and knee joint degrees of freedom on muscle force predictions during single-leg hop landings. J Biomech 47:2863–2868

    Article  PubMed  Google Scholar 

  42. Moniz-Pereira V, Cabral S, Carnide F, Veloso AP (2014) Sensitivity of joint kinematics and kinetics to different pose estimation algorithms and joint constraints in the elderly. J Appl Biomech 30:446–460

    Article  PubMed  Google Scholar 

  43. Myers C A, Laz P J, Shelburne K B, Davidson B S (2014) A probabilistic approach to quantify the impact of uncertainty propagation in musculoskeletal simulations. Ann Biomed Eng: (in press)

  44. Pal S, Langenderfer JE, Stowe JQ, Laz PJ, Petrella AJ, Rullkoetter PJ (2007) Probabilistic modeling of knee muscle moment arms: effects of methods, origin-insertion, and kinematic variability. Ann Biomed Eng 35:1632–1642

    Article  PubMed  Google Scholar 

  45. Peters A, Galna B, Sangeux M, Morris M, Baker R (2010) Quantification of soft tissue artifact in lower limb human motion analysis: a systematic review. Gait Posture 31:1–8

    Article  PubMed  Google Scholar 

  46. Plischke E (2010) An effective algorithm for computing global sensitivity indices (EASI). Reliab Eng Syst Saf 95:354–360

    Article  Google Scholar 

  47. Rao G, Amarantini D, Berton E, Favier D (2006) Influence of body segments’ parameters estimation models on inverse dynamics solutions during gait. J Biomech 39:1531–1536

    Article  PubMed  Google Scholar 

  48. Redl C, Gfoehler M, Pandy MG (2007) Sensitivity of muscle force estimates to variations in muscle-tendon properties. Hum Mov Sci 26:306–319

    Article  PubMed  Google Scholar 

  49. Reinbolt JA, Haftka RT, Chmielewski TL, Fregly BJ (2007) Are patient-specific joint and inertial parameters necessary for accurate inverse dynamics analyses of gait? IEEE Trans Biomed Eng 54:782–793

    Article  PubMed Central  PubMed  Google Scholar 

  50. Reinbolt JA, Schutte JF, Fregly BJ, Koh BI, Haftka RT, George AD, Mitchell KH (2005) Determination of patient-specific multi-joint kinematic models through two-level optimization. J Biomech 38:621–626

    Article  PubMed  Google Scholar 

  51. Ribeiro A, Rasmussen J, Flores P, Silva LF (2012) Modeling of the condyle elements within a biomechanical knee model. Multibody Syst Dyn 28:181–197

    Article  Google Scholar 

  52. Riemer R, Hsiao-Wecksler ET, Zhang X (2008) Uncertainties in inverse dynamics solutions: a comprehensive analysis and an application to gait. Gait Posture 27:578–588

    Article  PubMed  Google Scholar 

  53. Roren L (2005) White paper: OLGA explained. Vicon Peak, Oxford

    Google Scholar 

  54. Sancisi N, Parenti-Castelli V (2011) A new kinematic model of the passive motion of the knee inclusive of the patella. J Mech Robot 3:041003

    Article  Google Scholar 

  55. Sandholm A, Schwartz C, Pronost N, Zee M, Voigt M, Thalmann D (2011) Evaluation of a geometry-based knee joint compared to a planar knee joint. Vis Comput 27:161–171

    Article  Google Scholar 

  56. Scheys L, Desloovere K, Spaepen A, Suetens P, Jonkers I (2011) Calculating gait kinematics using MR-based kinematic models. Gait Posture 33:158–164

    Article  PubMed  Google Scholar 

  57. Scovil CY, Ronsky JL (2006) Sensitivity of a Hill-based muscle model to perturbations in model parameters. J Biomech 39:2055–2063

    Article  PubMed  Google Scholar 

  58. Sholukha V, Leardini A, Salvia P, Rooze M, Van Sint Jan S (2006) Double-step registration of in vivo stereophotogrammetry with both in vitro 6-DOFs electrogoniometry and CT medical imaging. J Biomech 39:2087–2095

    Article  PubMed  Google Scholar 

  59. Southgate DF, Cleather DJ, Weinert-Aplin RA, Bull AM (2012) The sensitivity of a lower limb model to axial rotation offsets and muscle bounds at the knee. Proc IME H J Eng Med 226:660–669

    Article  Google Scholar 

  60. Stagni R, Fantozzi S, Cappello A (2009) Double calibration vs. global optimisation: performance and effectiveness for clinical application. Gait Posture 29:119–122

    Article  PubMed  Google Scholar 

  61. Valente G, Martelli S, Taddei F, Farinella G, Viceconti M (2012) Muscle discretization affects the loading transferred to bones in lower-limb musculoskeletal models. Proc IME H J Eng Med 226:161–169

    Article  Google Scholar 

  62. Valente G, Pitto L, Testi D, Seth A, Delp SL, Stagni R, Viceconti M, Taddei F (2014) Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification? PLoS One 9:e112625

    Article  PubMed Central  PubMed  Google Scholar 

  63. Valente G, Taddei F, Jonkers I (2013) Influence of weak hip abductor muscles on joint contact forces during normal walking: probabilistic modeling analysis. J Biomech 46:2186–2193

    Article  PubMed  Google Scholar 

  64. Van Sint Jan S (2005) Introducing anatomical and physiological accuracy in computerized anthropometry for increasing the clinical usefulness of modeling systems. Crit Rev Phys Rehabil Med 17:249–274

    Article  Google Scholar 

  65. Viceconti M, Testi D, Taddei F, Martelli S, Clapworthy GJ, Van Sint Jan S (2006) Biomechanics modeling of the musculoskeletal apparatus: status and key issues. Proc IEEE 94:725–738

    Article  Google Scholar 

  66. Wesseling M, de Groote F, Jonkers I (2014) The effect of perturbing body segment parameters on calculated joint moments and muscle forces during gait. J Biomech 47:596–601

    Article  PubMed  Google Scholar 

  67. Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D’Lima DD, Cristofolini L, Witte H, Schmid O, Stokes I (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. Int Soc Biomech J Biomech 35:543–548

    Google Scholar 

  68. Xiao M, Higginson J (2010) Sensitivity of estimated muscle force in forward simulation of normal walking. J Appl Biomech 26:142–149

    PubMed Central  PubMed  Google Scholar 

  69. Xiao M, Higginson JS (2008) Muscle function may depend on model selection in forward simulation of normal walking. J Biomech 41:3236–3242

    Article  PubMed Central  PubMed  Google Scholar 

  70. Zheng L, Li K, Shetye S, Zhang X (2014) Integrating dynamic stereo-radiography and surface-based motion data for subject-specific musculoskeletal dynamic modeling. J Biomech 47:3217–3221

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaël Dumas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Habachi, A., Moissenet, F., Duprey, S. et al. Global sensitivity analysis of the joint kinematics during gait to the parameters of a lower limb multi-body model. Med Biol Eng Comput 53, 655–667 (2015). https://doi.org/10.1007/s11517-015-1269-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1269-8

Keywords