Abstract
A novel strategy for 4D PET optimization in the sinogram domain is proposed, aiming at motion model application before image reconstruction (“sinogram warping” strategy). Compared to state-of-the-art 4D-MLEM reconstruction, the proposed strategy is able to optimize the image SNR, avoiding iterative direct and inverse warping procedures, which are typical of the 4D-MLEM algorithm. A full-count statistics sinogram of the motion-compensated 4D PET reference phase is generated by warping the sinograms corresponding to the different PET phases. This is achieved relying on a motion model expressed in the sinogram domain. The strategy was tested on the anthropomorphic 4D PET–CT NCAT phantom in comparison with the 4D-MLEM algorithm, with particular reference to robustness to PET–CT co-registrations artefacts. The MLEM reconstruction of the warped sinogram according to the proposed strategy exhibited better accuracy (up to +40.90 % with respect to the ideal value), whereas images reconstructed according to the 4D-MLEM reconstruction resulted in less noisy (down to −26.90 % with respect to the ideal value) but more blurred. The sinogram warping strategy demonstrates advantages with respect to 4D-MLEM algorithm. These advantages are paid back by introducing approximation of the deformation field, and further efforts are required to mitigate the impact of such an approximation in clinical 4D PET reconstruction.






Similar content being viewed by others
References
Chang T, Chang G, Clark JW Jr, Diab RH, Rohren E, Mawlawi OR (2012) Reliability of predicting image signal-to-noise ratio using noise equivalent count rate in PET imaging. Med Phys 39(10):5891–5900
Christensen GE, Johnson HJ (2001) Consistent image registration. IEEE Trans Med Imaging 20(7):568–582
Cirilli M, Dosanjh M (2014) Education and training in medical imaging for conventional and particle radiation therapy through the EC founded ENVISION and ENTERVISION. Rom Rep Phys 66(1):22–29
Conti M, Bendriem B, Casey M, Chen M, Kehren F, Michel C, Panin V (2005) First experimental results of time-of-flight reconstruction on an LSO PET scanner. Phys Med Biol 50(19):4507
Gianoli C, Bauer J, Kurz C, Riboldi M, Parodi K, Baroni G (2013) A clinical study on 4D pet optimization and quantification in off-line treatment verification. Particle Therapy Co-Operative Group (PTCOG), Essen
Gianoli C, Kurz C, Riboldi M, Bauer J, Baroni G, Debus J, Parodi K (2013) Motion compensated reconstructions in 4D PET-based ion beam treatment verification. In: 4D treatment planning workshop, PSI, Villingen
Gianoli C, Riboldi M, Fontana G, Giri MG, Grigolato D, Ferdeghini M, Cavedon C, Baroni G (2015) Optimized PET imaging for 4D treatment planning in radiotherapy: the virtual 4D PET strategy. Technol Cancer Res Treat 14(1):99–110
Gianoli C, Kurz C, Riboldi M, Bauer J, Baroni G, Parodi K (2014) Motion compensated reconstructions in PET-based ion beam treatment verification for moving target. In: International conference on translational research in radio-oncology and physics for health in Europe (ICTR-PHE), Geneva
Gianoli C, Riboldi M, Kurz C, Parodi K, Baroni G (2014) A sinogram warping strategy for pre-reconstruction 4D PET optimization in ion beam therapy application. Radiother Oncol 111:S108
Gianoli C, Riboldi M, Kurz C, De Bernardi E, Bauer J, Fontana G, Ciocca M, Parodi K, Baroni G (2014) PET–CT scanner characterization for PET raw data use in biomedical research. Comput Med Imaging Graph 38(5):358–368
Gianoli C, Bauer J, Riboldi M, De Bernardi E, Fattori G, Baselli G, Debus J, Parodi K, Baroni G (2014) Regional MLEM reconstruction strategy for PET-based treatment verification in ion beam radiotherapy. Phys Med Biol 59(22):6979
Jan S, Santin G, Strul D, Staelens S, Assié K, Autret D, Avner S, Barbier R, Bardiès M, Bloomfield PM, Brasse D, Breton V, Bruyndonckx P, Buvat I, Chatziioannou AF, Choi Y, Chung YH, Comtat C, Donnarieix D, Ferrer L, Glick SJ, Groiselle CJ, Guez D, Honore P-F, Kerhoas-Cavata S, Kirov AS, Kohli V, Koole M, Krieguer M, van der Laan DJ, Lamare F, Largeron G, Lartizien C, Lazaro D, Maas MC, Maigne L, Mayet F, Melot F, Merheb C, Pennacchio E, Perez J, Pietrzyk U, Rannou FR, Rey M, Schaart DR, Schmidtlein CR, Simon L, Song TY, Vieira J-M, Visvikis D, Van de Walle R, Wieërs E, Morel C (2004) GATE: a simulation toolkit for PET and SPECT. Phys Med Biol 49(19):4543
Knopf A, Nill S, Yohannes I, Graeff C, Dowdell S, Kurz C, Sonke J-J, Biegun AK, Lang S, McClelland J, Champion B, Fast M, Wölfelschneider J, Gianoli C, Rucinski A, Baroni G, Richter C, van de Water S, Grassberger C, Weber D, Per Poulsen S, Shimizu C (2014) Challenges of radiotherapy: report on the 4D treatment planning workshop 2013. Phys Med 30(7):809–815
Lamare F, Carbayo ML, Cresson T, Kontaxakis G, Santos A, Le Rest CC, Reader AJ, Visvikis D (2007) List-mode-based reconstruction for respiratory motion correction in PET using non-rigid body transformations. Phys Med Biol 52(17):5187
Laube K, Menkel S, Bert C, Enghardt W, Helmbrecht S, Saito N, Fiedler F (2013) 4D particle therapy PET simulation for moving targets irradiated with scanned ion beams. Phys Med Biol 58(3):513–533
Lee JS, Kim B, Chee Y, Kwark C, Lee MC, Park KS (2000) Fusion of coregistered cross-modality images using a temporally alternating display method. Med Biol Eng Comput 38(2):127–132
Lewitt RM, Matej S (2003) Overview of methods for image reconstruction from projections in emission computed tomography. Proc IEEE 91(10):1588–1611
Li T, Thorndyke B, Schreibmann E, Yang Y, Xing L (2006) Model-based image reconstruction for four-dimensional PET. Med Phys 33(5):1288–1298
McClelland JR, Hawkes DJ, Schaeffter T, King AP (2013) Respiratory motion models: a review. Med Image Anal 17(1):19–42
Nehmeh SA (2013) Respiratory motion correction strategies in thoracic PET–CT imaging. PET Clin 8(1):29–36
Parodi K, Saito N, Chaudhri N, Richter C, Durante M, Enghardt W, Rietzel E, Bert C (2009) 4D in-beam positron emission tomography for verification of motion-compensated ion beam therapy. Med Phys 36(9):4230–4243
Rahmim A, Rousset O, Zaidi H (2007) Strategies for motion tracking and correction in PET. PET Clin 2(2):251–266
Rahmim A, Tang J, Zaidi H (2009) Four-dimensional (4D) image reconstruction strategies in dynamic PET: beyond conventional independent frame reconstruction. Med Phys 36(8):3654–3670
Rahmim A, Tang J, Zaidi H (2013) Four-dimensional image reconstruction strategies in cardiac-gated and respiratory-gated PET imaging. PET Clin 8(1):51–67
Reader AJ, Zaidi H (2007) Advances in PET image reconstruction. PET Clin 2(2):173–190
Segars WP (2001) Development of a new dynamic NURBS-based cardiac torso (NCAT) phantom. Ph.D. thesis, University of North Carolina
Shackleford JA, Kandasamy N, Sharp GC (2010) On developing B-spline registration algorithms for multi-core processors. Phys Med Biol 55(21):6329
Strother SC, Casey ME, Hoffman EJ (1990) Measuring PET scanner sensitivity: relating countrates to image signal-to-noise ratios using noise equivalents counts. IEEE Trans Nucl Sci 37(2):783–788
Stützer K, Bert C, Enghardt W, Helmbrecht S, Parodi K, Priegnitz M, Saito N, Fiedler F (2013) Experimental verification of a 4D MLEM reconstruction algorithm used for in-beam PET measurements in particle therapy. Phys Med Biol 58(15):5085–5111
Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS (2007) Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med 48(3):471–480
Wang J, Del Valle M, Goryawala M, Franquiz JM, Mcgoron AJ (2010) Computer-assisted quantification of lung tumors in respiratory gated PET/CT images: phantom study. Med Biol Eng Comput 48(1):49–58
Woo SK, Watabe H, Choi Y, Kim KM, Park CC, Bloomfield PM, Iida H (2004) Sinogram-based motion correction of pet images using optical motion tracking system and list-mode data acquisition. IEEE Trans Nucl Sci 51(3):782–788
Yang D, Li H, Low DA, Deasy JO, El Naqa I (2008) A fast inverse consistent deformable image registration method based on symmetric optical flow computation. Phys Med Biol 53(21):6143
Zhu H, Shu H, Zhou J, Toumoulin C, Luo L (2006) Image reconstruction for positron emission tomography using fuzzy nonlinear anisotropic diffusion penalty. Med Biol Eng Comput 44(11):983–997
Acknowledgments
This work was partially supported by the ENVISION EU FP7 program and the ULICE EU FP7 program.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gianoli, C., Riboldi, M., Fontana, G. et al. A sinogram warping strategy for pre-reconstruction 4D PET optimization. Med Biol Eng Comput 54, 535–546 (2016). https://doi.org/10.1007/s11517-015-1339-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11517-015-1339-y