Abstract
As physical entities, living cells can sense and respond to various stimulations within and outside the body through cellular mechanotransduction. Any deviation in cellular mechanotransduction will not only undermine the orchestrated regulation of mechanical responses, but also lead to the breakdown of their physiological function. Therefore, a quantitative study of cellular mechanotransduction needs to be conducted both in experiments and in computational simulations to investigate the underlying mechanisms of cellular mechanotransduction. In this review, we present an overview of the current knowledge and significant progress in cellular mechanotransduction via micropost substrates. In the aspect of experimental studies, we summarize significant experimental progress and place an emphasis on the coupled relationship among cellular spreading, focal adhesion and contractility as well as the influence of substrate properties on force-involved cellular behaviors. In the other aspect of computational investigations, we outline a coupled framework including the biochemically motivated stress fiber model and thermodynamically motivated adhesion model and present their predicted biomechanical responses and then compare predicted simulation results with experimental observations to further explore the mechanisms of cellular mechanotransduction. At last, we discuss the future perspectives both in experimental technologies and in computational models, as well as facing challenges in the area of cellular mechanotransduction.







Similar content being viewed by others
References
Addae-Mensah KA, Wikswo JP (2008) Measurement techniques for cellular biomechanics in vitro. Exp Biol Med (Maywood) 233(7):792–809. doi:10.3181/0710-MR-278
Ananthakrishnan R, Ehrlicher A (2007) The forces behind cell movement. Int J Biol Sci 3(5):303–317
Anderson DE, Hinds MT (2011) Endothelial cell micropatterning: methods, effects, and applications. Ann Biomed Eng 39(9):2329–2345. doi:10.1007/s10439-011-0352-z
Bagorda A, Mihaylov VA, Parent CA (2006) Chemotaxis: moving forward and holding on to the past. Thromb Haemost 95(1):12–21. doi:10.1160/th05c07c0483
Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran S, Bershadsky A, Addadi L, Geiger B (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3(5):466–472. doi:10.1038/35074532
Beningo KA, Dembo M, Kaverina I, Small JV, Wang YL (2001) Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J Cell Biol 153(4):881–888
Beningo KA, Lo CM, Wang YL (2002) Flexible polyacrylamide substrata for the analysis of mechanical interactions at cell–substratum adhesions. Methods Cell Matrix Adhes 69:325–339. doi:10.1016/S0091-679x(02)69021-1
Berrier AL, Yamada KM (2007) Cell–matrix adhesion. J Cell Physiol 213(3):565–573. doi:10.1002/jcp.21237
Bershadsky A, Kozlov M, Geiger B (2006) Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize. Curr Opin Cell Biol 18(5):472–481. doi:10.1016/j.ceb.2006.08.012
Bershadsky AD, Balaban NQ, Geiger B (2003) Adhesion-dependent cell mechanosensitivity. Annu Rev Cell Dev Biol 19:677–695. doi:10.1146/annurev.cellbio.19.111301.153011
Birchenall CE (1983) Introduction to metallurgical thermodynamics. J Am Chem Soc 105(13):4502
Bloom RJ, George JP, Celedon A, Sun SX, Wirtz D (2008) Mapping local matrix remodeling induced by a migrating tumor cell using three-dimensional multiple-particle tracking. Biophys J 95(8):4077–4088. doi:10.1529/biophysj.108.132738
Blumenfeld R (2006) Isostaticity and controlled force transmission in the cytoskeleton: a model awaiting experimental evidence. Biophys J 91(5):1970–1983. doi:10.1529/biophysj.105.076703
Borghi N, Lowndes M, Maruthamuthu V, Gardel ML, Nelson WJ (2010) Regulation of cell motile behavior by crosstalk between cadherin- and integrin-mediated adhesions. Proc Natl Acad Sci USA 107(30):13324–13329. doi:10.1073/pnas.1002662107
Breckenridge MT, Desai RA, Yang MT, Fu JP, Chen CS (2014) Substrates with engineered step changes in rigidity induce traction force polarity and durotaxis. Cell Mol Bioeng 7(1):26–34. doi:10.1007/s12195-013-0307-6
Bruinsma R (2005) Theory of force regulation by nascent adhesion sites. Biophys J 89(1):87–94. doi:10.1529/biophysj.104.048280
Burger EH, Klein-Nulend J (1999) Mechanotransduction in bone—role of the lacuno-canalicular network. FASEB J 13:S101–S112
Burton K, Taylor DL (1997) Traction forces of cytokinesis measured with optically modified elastic substrata. Nature 385(6615):450–454. doi:10.1038/385450a0
Butler JP, Tolic-Norrelykke IM, Fabry B, Fredberg JJ (2002) Traction fields, moments, and strain energy that cells exert on their surroundings. Am J Physiol Cell Physiol 282(3):C595–C605
Califano JP, Reinhart-King CA (2010) Substrate stiffness and cell area predict cellular traction stresses in single cells and cells in contact. Cell Mol Bioeng 3(1):68–75. doi:10.1007/s12195-010-0102-6
Campbell JJ, Blain EJ, Chowdhury TT, Knight MM (2007) Loading alters actin dynamics and up-regulates cofilin gene expression in chondrocytes. Biochem Biophys Res Commun 361(2):329–334. doi:10.1016/j.bbrc.2007.06.185
Charras GT, Horton MA (2002) Determination of cellular strains by combined atomic force microscopy and finite element modeling. Biophys J 83(2):858–879. doi:10.1016/S0006-3495(02)75214-4
Chen CS (2008) Mechanotransduction—a field pulling together? J Cell Sci 121(Pt 20):3285–3292. doi:10.1242/jcs.023507
Chen CS, Tan J, Tien J (2004) Mechanotransduction at cell–matrix and cell–cell contacts. Annu Rev Biomed Eng 6:275–302. doi:10.1146/annurev.bioeng.6.040803.140040
Chen KD, Li YS, Kim M, Li S, Yuan S, Chien S, Shyy JY (1999) Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J Biol Chem 274(26):18393–18400
Cheng Q, Almasri M, Sun Z, Meininger GA (2010) Micropost array for force mapping of vascular smooth muscle cells. IEEE Sens. doi:10.1109/Icsens.2010.5690288
Cheng Q, Sun Z, Meininger G, Almasri M (2013) PDMS elastic micropost arrays for studying vascular smooth muscle cells. Sens Actuators B Chem 188:1055–1063. doi:10.1016/j.snb.2013.08.018
Chrzanowska-Wodnicka M, Burridge K (1996) Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol 133(6):1403–1415
Curtis A, Riehle M (2001) Tissue engineering: the biophysical background. Phys Med Biol 46(4):R47–R65
Curtze S, Dembo M, Miron M, Jones DB (2004) Dynamic changes in traction forces with DC electric field in osteoblast-like cells. J Cell Sci 117(Pt 13):2721–2729. doi:10.1242/jcs.01119
Dado D, Levenberg S (2009) Cell–scaffold mechanical interplay within engineered tissue. Semin Cell Dev Biol 20(6):656–664. doi:10.1016/j.semcdb.2009.02.001
Dao M, Lim CT, Suresh S (2003) Mechanics of the human red blood cell deformed by optical tweezers. J Mech Phys Solids 51(11–12):2259–2280. doi:10.1016/j.jmps.2003.09.019
Das T, Maiti TK, Chakraborty S (2008) Traction force microscopy on-chip: shear deformation of fibroblast cells. Lab Chip 8(8):1308–1318. doi:10.1039/b803925a
Davies PF (1995) Flow-mediated endothelial mechanotransduction. Physiol Rev 75(3):519–560
Delanoe-Ayari H, Iwaya S, Maeda YT, Inose J, Riviere C, Sano M, Rieu JP (2008) Changes in the magnitude and distribution of forces at different Dictyostelium developmental stages. Cell Motil Cytoskelet 65(4):314–331. doi:10.1002/Cm.20262
Dembo M, Oliver T, Ishihara A, Jacobson K (1996) Imaging the traction stresses exerted by locomoting cells with the elastic substratum method. Biophys J 70(4):2008–2022. doi:10.1016/S0006-3495(96)79767-9
Dembo M, Wang YL (1999) Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys J 76(4):2307–2316
Deshpande VS, McMeeking RM, Evans AG (2006) A bio-chemo-mechanical model for cell contractility. Proc Natl Acad Sci USA 103(38):14015–14020. doi:10.1073/pnas.0605837103
Deshpande VS, McMeeking RM, Evans AG (2007) A model for the contractility of the cytoskeleton including the effects of stress-fibre formation and dissociation. Proc R Soc A Math Phys Eng Sci 463(2079):787–815. doi:10.1098/rspa.2006.1793
Deshpande VS, Mrksich M, McMeeking RM, Evans AG (2008) A bio-mechanical model for coupling cell contractility with focal adhesion formation. J Mech Phys Solids 56(4):1484–1510. doi:10.1016/j.jmps.2007.08.006
Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143. doi:10.1126/science.1116995
Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324(5935):1673–1677. doi:10.1126/science.1171643
Dowling EP, Ronan W, McGarry JP (2013) Computational investigation of in situ chondrocyte deformation and actin cytoskeleton remodelling under physiological loading. Acta Biomater 9(4):5943–5955. doi:10.1016/j.actbio.2012.12.021
Doyle AD, Lee J (2005) Cyclic changes in keratocyte speed and traction stress arise from Ca2+-dependent regulation of cell adhesiveness. J Cell Sci 118(Pt 2):369–379. doi:10.1242/jcs.01590
du Roure O, Dequidt C, Richert A, Austin RH, Buguin A, Chavrier P, Silberzan P, Ladoux B (2004) Microfabricated arrays of elastomeric posts to study cellular mechanics. Microfluid BioMEMS Med Microsyst II 5345:26–34. doi:10.1117/12.530688
du Roure O, Saez A, Buguin A, Austin RH, Chavrier P, Silberzan P, Ladoux B (2005) Force mapping in epithelial cell migration. Proc Natl Acad Sci USA 102(7):2390–2395. doi:10.1073/pnas.0408482102
Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S (2011) Role of YAP/TAZ in mechanotransduction. Nature 474(7350):179–183. doi:10.1038/nature10137
El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442(7101):403–411. doi:10.1038/nature05063
Engler A, Bacakova L, Newman C, Hategan A, Griffin M, Discher D (2004) Substrate compliance versus ligand density in cell on gel responses. Biophys J 86(1 Pt 1):617–628. doi:10.1016/S0006-3495(04)74140-5
Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689. doi:10.1016/j.cell.2006.06.044
Engler AJ, Sweeney HL, Discher DE, Schwarzbauer JE (2007) Extracellular matrix elasticity directs stem cell differentiation. J Musculoskelet Neuronal Interact 7(4):335
Franck C, Maskarinec SA, Tirrell DA, Ravichandran G (2011) Three-dimensional traction force microscopy: a new tool for quantifying cell–matrix interactions. PLoS One 6(3):e17833. doi:10.1371/journal.pone.0017833
Franke RP, Grafe M, Schnittler H, Seiffge D, Mittermayer C, Drenckhahn D (1984) Induction of human vascular endothelial stress fibers by fluid shear-stress. Nature 307(5952):648–649. doi:10.1038/307648a0
Fu J, Wang YK, Yang MT, Desai RA, Yu X, Liu Z, Chen CS (2010) Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat Methods 7(9):733–736. doi:10.1038/nmeth.1487
Galbraith CG, Sheetz MP (1997) A micromachined device provides a new bend on fibroblast traction forces. Proc Natl Acad Sci USA 94(17):9114–9118
Galbraith CG, Sheetz MP (1998) Forces on adhesive contacts affect cell function. Curr Opin Cell Biol 10(5):566–571
Galbraith CG, Yamada KM, Sheetz MP (2002) The relationship between force and focal complex development. J Cell Biol 159(4):695–705. doi:10.1083/jcb.200204153
Ganz A, Lambert M, Saez A, Silberzan P, Buguin A, Mege RM, Ladoux B (2006) Traction forces exerted through N-cadherin contacts. Biol Cell 98(12):721–730. doi:10.1042/Bc20060039
Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2(11):793–805. doi:10.1038/35099066
Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10(1):21–33. doi:10.1038/Nrm2593
Ghibaudo M, Saez A, Trichet L, Xayaphoummine A, Browaeys J, Silberzan P, Buguin A, Ladoux B (2008) Traction forces and rigidity sensing regulate cell functions. Soft Matter 4(9):1836–1843. doi:10.1039/B804103b
Giannone G, Sheetz MP (2006) Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways. Trends Cell Biol 16(4):213–223. doi:10.1016/j.tcb.2006.02.005
Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA, Kraft P, Nguyen NK, Thrun S, Lutolf MP, Blau HM (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329(5995):1078–1081. doi:10.1126/science.1191035
Guck J, Lautenschlager F, Paschke S, Beil M (2010) Critical review: cellular mechanobiology and amoeboid migration. Integr Biol 2(11–12):575–583. doi:10.1039/c0ib00050g
Hahn C, Schwartz MA (2009) Mechanotransduction in vascular physiology and atherogenesis. Nat Rev Mol Cell Biol 10(1):53–62. doi:10.1038/nrm2596
Han SJ, Bielawski KS, Ting LH, Rodriguez ML, Sniadecki NJ (2012) Decoupling substrate stiffness, spread area, and micropost density: a close spatial relationship between traction forces and focal adhesions. Biophys J 103(4):640–648. doi:10.1016/j.bpj.2012.07.023
Han SJ, Sniadecki NJ (2010) Nanotechnology usages for cellular adhesion and traction forces. Cell Biomolcular Mech Mechanobiol 4:177–200. doi:10.1007/8415_2010_26
Han SJ, Sniadecki NJ (2011) Simulations of the contractile cycle in cell migration using a bio-chemical–mechanical model. Comput Methods Biomech Biomed Eng 14(5):459–468. doi:10.1080/10255842.2011.554412
Harris AK, Stopak D, Wild P (1981) Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290(5803):249–251. doi:10.1038/290249a0
Harris AK, Wild P, Stopak D (1980) Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208(4440):177–179
Higa A (2012) Cellular mechanotransduction via microfabricated post arrays. Ph.D. thesis, University of California, Berkeley, CA
Hoffman BD, Grashoff C, Schwartz MA (2011) Dynamic molecular processes mediate cellular mechanotransduction. Nature 475(7356):316–323. doi:10.1038/nature10316
Huang H, Kamm RD, Lee RT (2004) Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am J Physiol Cell Physiol 287(1):C1–C11. doi:10.1152/ajpcell.00559.2003
Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 59:575–599. doi:10.1146/annurev.physiol.59.1.575
Isenberg BC, Dimilla PA, Walker M, Kim S, Wong JY (2009) Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength. Biophys J 97(5):1313–1322. doi:10.1016/j.bpj.2009.06.021
Jaalouk DE, Lammerding J (2009) Mechanotransduction gone awry. Nat Rev Mol Cell Biol 10(1):63–73. doi:10.1038/nrm2597
Kaunas R, Nguyen P, Usami S, Chien S (2005) Cooperative effects of Rho and mechanical stretch on stress fiber organization. Proc Natl Acad Sci USA 102(44):15895–15900. doi:10.1073/pnas.0506041102
Kaverina I, Krylyshkina O, Beningo K, Anderson K, Wang YL, Small JV (2002) Tensile stress stimulates microtubule outgrowth in living cells. J Cell Sci 115(Pt 11):2283–2291
Knight MM, Toyoda T, Lee DA, Bader DL (2006) Mechanical compression and hydrostatic pressure induce reversible changes in actin cytoskeletal organisation in chondrocytes in agarose. J Biomech 39(8):1547–1551. doi:10.1016/j.jbiomech.2005.04.006
Kolega J (1986) Effects of mechanical tension on protrusive activity and microfilament and intermediate filament organization in an epidermal epithelium moving in culture. J Cell Biol 102(4):1400–1411
Ladoux B, Anon E, Lambert M, Rabodzey A, Hersen P, Buguin A, Silberzan P, Mege RM (2010) Strength dependence of cadherin-mediated adhesions. Biophys J 98(4):534–542. doi:10.1016/j.bpj.2009.10.044
Lam RHW, Sun YB, Chen WQ, Fu JP (2012) Elastomeric microposts integrated into microfluidics for flow-mediated endothelial mechanotransduction analysis. Lab Chip 12(10):1865–1873. doi:10.1039/C2lc21146g
Lam RHW, Weng SN, Lu W, Fu JP (2012) Live-cell subcellular measurement of cell stiffness using a microengineered stretchable micropost array membrane. Integr Biol 4(10):1289–1298. doi:10.1039/C2ib20134h
Lee J, Leonard M, Oliver T, Ishihara A, Jacobson K (1994) Traction forces generated by locomoting keratocytes. J Cell Biol 127(6 Pt 2):1957–1964
Lemmon CA, Sniadecki NJ, Ruiz SA, Tan JT, Romer LH, Chen CS (2005) Shear force at the cell–matrix interface: enhanced analysis for microfabricated post array detectors. Mech Chem Biosyst 2(1):1–16
Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906. doi:10.1016/j.cell.2009.10.027
Li B, Xie L, Starr ZC, Yang Z, Lin JS, Wang JH (2007) Development of micropost force sensor array with culture experiments for determination of cell traction forces. Cell Motil Cytoskele 64(7):509–518. doi:10.1002/cm.20200
Lin YC, Kramer CM, Chen CS, Reich DH (2012) Probing cellular traction forces with magnetic nanowires and microfabricated force sensor arrays. Nanotechnology 23(7):075101. doi:10.1088/0957-4484/23/7/075101
Liu F, Mih JD, Shea BS, Kho AT, Sharif AS, Tager AM, Tschumperlin DJ (2010) Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J Cell Biol 190(4):693–706. doi:10.1083/jcb.201004082
Liu M, Post M (2000) Invited review: mechanochemical signal transduction in the fetal lung. J Appl Physiol 89(5):2078–2084
Liu Z, Tan JL, Cohen DM, Yang MT, Sniadecki NJ, Ruiz SA, Nelson CM, Chen CS (2010) Mechanical tugging force regulates the size of cell–cell junctions. Proc Natl Acad Sci USA 107(22):9944–9949. doi:10.1073/pnas.0914547107
Lo CM, Buxton DB, Chua GCH, Dembo M, Adelstein RS, Wang YL (2004) Nonmuscle myosin IIB is involved in the guidance of fibroblast migration. Mol Biol Cell 15(3):982–989. doi:10.1091/mbc.E03-06-0359
Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79(1):144–152
Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47–55. doi:10.1038/Nbt1055
Mammoto T, Ingber DE (2010) Mechanical control of tissue and organ development. Development 137(9):1407–1420. doi:10.1242/dev.024166
Mann JM, Lam RH, Weng S, Sun Y, Fu J (2012) A silicone-based stretchable micropost array membrane for monitoring live-cell subcellular cytoskeletal response. Lab Chip 12(4):731–740. doi:10.1039/c2lc20896b
Maruthamuthu V, Sabass B, Schwarz US, Gardel ML (2011) Cell-ECM traction force modulates endogenous tension at cell–cell contacts. Proc Natl Acad Sci USA 108(12):4708–4713. doi:10.1073/pnas.1011123108
Matthews BD, Overby DR, Mannix R, Ingber DE (2006) Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J Cell Sci 119(Pt 3):508–518. doi:10.1242/jcs.02760
McGarry JP, Fu J, Yang MT, Chen CS, McMeeking RM, Evans AG, Deshpande VS (2009) Simulation of the contractile response of cells on an array of micro-posts. Philos Trans A Math Phys Eng Sci 367(1902):3477–3497. doi:10.1098/rsta.2009.0097
Mitrossilis D, Fouchard J, Guiroy A, Desprat N, Rodriguez N, Fabry B, Asnacios A (2009) Single-cell response to stiffness exhibits muscle-like behavior. Proc Natl Acad Sci USA 106(43):18243–18248. doi:10.1073/pnas.0903994106
Mohammadi H, McCulloch CA (2014) Impact of elastic and inelastic substrate behaviors on mechanosensation. Soft Matter 10(3):408–420. doi:10.1039/c3sm52729h
Mohrdieck C, Wanner A, Roos W, Roth A, Sackmann E, Spatz JP, Arzt E (2005) A theoretical description of elastic pillar substrates in biophysical experiments. ChemPhysChem 6(8):1492–1498. doi:10.1002/cphc.200500109
Munevar S, Wang Y, Dembo M (2001) Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys J 80(4):1744–1757
Nagayama K, Adachi A, Matsumoto T (2011) Heterogeneous response of traction force at focal adhesions of vascular smooth muscle cells subjected to macroscopic stretch on a micropillar substrate. J Biomech 44(15):2699–2705. doi:10.1016/j.jbiomech.2011.07.023
Neilson MP, Veltman DM, van Haastert PJ, Webb SD, Mackenzie JA, Insall RH (2011) Chemotaxis: a feedback-based computational model robustly predicts multiple aspects of real cell behaviour. PLoS Biol 9(5):e1000618. doi:10.1371/journal.pbio.1000618
Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, Chen CS (2005) Emergent patterns of growth controlled by multicellular form and mechanics. Proc Natl Acad Sci USA 102(33):11594–11599. doi:10.1073/pnas.0502575102
Nicolas A, Geiger B, Safran SA (2004) Cell mechanosensitivity controls the anisotropy of focal adhesions. Proc Natl Acad Sci USA 101(34):12520–12525. doi:10.1073/pnas.0403539101
Nicolas A, Safran SA (2006) Limitation of cell adhesion by the elasticity of the extracellular matrix. Biophys J 91(1):61–73. doi:10.1529/biophysj.105.077115
Nobes CD, Hall A (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81(1):53–62
Novak IL, Slepchenko BM, Mogilner A, Loew LM (2004) Cooperativity between cell contractility and adhesion. Phys Rev Lett. doi:10.1103/Physrevlett.93.268109
Orr AW, Helmke BP, Blackman BR, Schwartz MA (2006) Mechanisms of mechanotransduction. Dev Cell 10(1):11–20. doi:10.1016/j.devcel.2005.12.006
Parker KK, Brock AL, Brangwynne C, Mannix RJ, Wang N, Ostuni E, Geisse NA, Adams JC, Whitesides GM, Ingber DE (2002) Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. FASEB J 16(10):1195–1204. doi:10.1096/fj.02-0038com
Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254. doi:10.1016/j.ccr.2005.08.010
Pathak A, Deshpande VS, McMeeking RM, Evans AG (2008) The simulation of stress fibre and focal adhesion development in cells on patterned substrates. J R Soc Interface 5(22):507–524. doi:10.1098/rsif.2007.1182
Pathak A, McMeeking RM, Evans AG, Deshpande VS (2011) An analysis of the cooperative mechano-sensitive feedback between intracellular signaling, focal adhesion development, and stress fiber contractility. J Appl Mech Trans ASME. doi:10.1115/1.4003705
Pelham RJ Jr, Wang Y (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA 94(25):13661–13665
Petroll WM, Ma L, Jester JV (2003) Direct correlation of collagen matrix deformation with focal adhesion dynamics in living corneal fibroblasts. J Cell Sci 116(Pt 8):1481–1491
Petronis S, Gold J, Kasemo B (2003) Microfabricated force-sensitive elastic substrates for investigation of mechanical cell–substrate interactions. J Micromech Microeng 13(6):900–913. doi:10.1088/0960-1317/13/6/313
Raab M, Swift J, Dingal PC, Shah P, Shin JW, Discher DE (2012) Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain. J Cell Biol 199(4):669–683. doi:10.1083/jcb.201205056
Rabodzey A, Alcaide P, Luscinskas FW, Ladoux B (2008) Mechanical forces induced by the transendothelial migration of human neutrophils. Biophys J 95(3):1428–1438. doi:10.1529/biophysj.107.119156
Rape AD, Guo WH, Wang YL (2011) The regulation of traction force in relation to cell shape and focal adhesions. Biomaterials 32(8):2043–2051. doi:10.1016/j.biomaterials.2010.11.044
Reinhart-King CA, Dembo M, Hammer DA (2005) The dynamics and mechanics of endothelial cell spreading. Biophys J 89(1):676–689. doi:10.1529/biophysj.104.054320
Ricart BG, Yang MT, Hunter CA, Chen CS, Hammer DA (2011) Measuring traction forces of motile dendritic cells on micropost arrays. Biophys J 101(11):2620–2628. doi:10.1016/j.bpj.2011.09.022
Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, Kam Z, Geiger B, Bershadsky AD (2001) Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 153(6):1175–1185. doi:10.1083/jcb.153.6.1175
Roberts SR, Knight MM, Lee DA, Bader DL (2001) Mechanical compression influences intracellular Ca2+ signaling in chondrocytes seeded in agarose constructs. J Appl Physiol 90(4):1385–1391
Rodriguez AG, Han SJ, Regnier M, Sniadecki NJ (2011) Substrate stiffness increases twitch power of neonatal cardiomyocytes in correlation with changes in myofibril structure and intracellular calcium. Biophys J 101(10):2455–2464. doi:10.1016/j.bpj.2011.09.057
Ronan W, Pathak A, Deshpande VS, McMeeking RM, McGarry JP (2013) Simulation of the mechanical response of cells on micropost substrates. J Biomech Eng 135(10):101012. doi:10.1115/1.4025114
Sabass B, Gardel ML, Waterman CM, Schwarz US (2008) High resolution traction force microscopy based on experimental and computational advances. Biophys J 94(1):207–220. doi:10.1529/biophysj.107.113670
Saez A, Anon E, Ghibaudo M, du Roure O, Di Meglio JM, Hersen P, Silberzan P, Buguin A, Ladoux B (2010) Traction forces exerted by epithelial cell sheets. J Phys Condens Matter 22(19):194119. doi:10.1088/0953-8984/22/19/194119
Saez A, Buguin A, Silberzan P, Ladoux B (2005) Is the mechanical activity of epithelial cells controlled by deformations or forces? Biophys J 89(6):L52–L54. doi:10.1529/biophysj.105.071217
Saez A, Ghibaudo M, Buguin A, Silberzan P, Ladoux B (2007) Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc Natl Acad Sci USA 104(20):8281–8286. doi:10.1073/pnas.0702259104
Saez A, Ladoux B, du Roure O, Silberzan P, Buguin A, Chavrier P, Austin RH (2005) An array of micro fabricated pillars to map forces during epithelial cell migration. Biophys J 88(1):518a
Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, Healy KE (2008) Substrate modulus directs neural stem cell behavior. Biophys J 95(9):4426–4438. doi:10.1529/biophysj.108.132217
Satcher RL Jr, Dewey CF Jr (1996) Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton. Biophys J 71(1):109–118. doi:10.1016/S0006-3495(96)79206-8
Sawada Y, Sheetz MP (2002) Force transduction by Triton cytoskeletons. J Cell Biol 156(4):609–615. doi:10.1083/jcb.200110068
Schmitz GJ, Brucker C, Jacobs P (2005) Manufacture of high-aspect-ratio micro-hair sensor arrays. J Micromech Microeng 15(10):1904–1910. doi:10.1088/0960-1317/15/10/016
Schoen I, Hu W, Klotzsch E, Vogel V (2010) Probing cellular traction forces by micropillar arrays: contribution of substrate warping to pillar deflection. Nano Lett 10(5):1823–1830. doi:10.1021/nl100533c
Schwartz MA (2010) Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb Perspect Biol 2(12):a005066. doi:10.1101/cshperspect.a005066
Schwarz US, Balaban NQ, Riveline D, Bershadsky A, Geiger B, Safran SA (2002) Calculation of forces at focal adhesions from elastic substrate data: the effect of localized force and the need for regularization. Biophys J 83(3):1380–1394
Sen S, Kumar S (2010) Combining mechanical and optical approaches to dissect cellular mechanobiology. J Biomech 43(1):45–54. doi:10.1016/j.jbiomech.2009.09.008
Shemesh T, Geiger B, Bershadsky AD, Kozlov MM (2005) Focal adhesions as mechanosensors: a physical mechanism. Proc Natl Acad Sci USA 102(35):12383–12388. doi:10.1073/pnas.0500254102
Shraiman BI (2005) Mechanical feedback as a possible regulator of tissue growth. Proc Natl Acad Sci USA 102(9):3318–3323. doi:10.1073/pnas.0404782102
Sniadecki NJ, Anguelouch A, Yang MT, Lamb CM, Liu Z, Kirschner SB, Liu Y, Reich DH, Chen CS (2007) Magnetic microposts as an approach to apply forces to living cells. Proc Natl Acad Sci USA 104(37):14553–14558. doi:10.1073/pnas.0611613104
Sniadecki NJ, Chen CS (2007) Microfabricated silicone elastomeric post arrays for measuring traction forces of adherent cells. Methods Cell Biol 83:313–328. doi:10.1016/S0091-679X(07)83013-5
Sniadecki NJ, Desai RA, Ruiz SA, Chen CS (2006) Nanotechnology for cell–substrate interactions. Ann Biomed Eng 34(1):59–74. doi:10.1007/s10439-005-9006-3
Sniadecki NJ, Lamb CM, Liu Y, Chen CS, Reich DH (2008) Magnetic microposts for mechanical stimulation of biological cells: fabrication, characterization, and analysis. Rev Sci Instrum 79(4):044302. doi:10.1063/1.2906228
Sochol RD, Higa AT, Janairo RRR, Li S, Lin L (2011) Effects of micropost spacing and stiffness on cell motility. Micro Nano Lett 6(5):323–326. doi:10.1049/mnl.2011.0020
Sochol RD, Higa AT, Janairo RRR, Li S, Lin LW (2011) Unidirectional mechanical cellular stimuli via micropost array gradients. Soft Matter 7(10):4606–4609. doi:10.1039/C1sm05163f
Spatz JP, Geiger B (2007) Molecular engineering of cellular environments: cell adhesion to nano-digital surfaces. Methods Cell Biol 83:89–111. doi:10.1016/S0091-679X(07)83005-6
Stephens L, Milne L, Hawkins P (2008) Moving towards a better understanding of chemotaxis. Curr Biol 18(11):R485–R494. doi:10.1016/j.cub.2008.04.048
Storm C, Pastore JJ, MacKintosh FC, Lubensky TC, Janmey PA (2005) Nonlinear elasticity in biological gels. Nature 435(7039):191–194. doi:10.1038/nature03521
Sun Y, Chen CS, Fu J (2012) Forcing stem cells to behave: a biophysical perspective of the cellular microenvironment. Annu Rev Biophys 41:519–542. doi:10.1146/annurev-biophys-042910-155306
Sun Y, Villa-Diaz LG, Lam RH, Chen W, Krebsbach PH, Fu J (2012) Mechanics regulates fate decisions of human embryonic stem cells. PLoS One 7(5):e37178. doi:10.1371/journal.pone.0037178
Sun Y, Weng S, Fu J (2012) Microengineered synthetic cellular microenvironment for stem cells. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4(4):414–427. doi:10.1002/wnan.1175
Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PC, Pinter J, Pajerowski JD, Spinler KR, Shin JW, Tewari M, Rehfeldt F, Speicher DW, Discher DE (2013) Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341(6149):1240104. doi:10.1126/science.1240104
Takahashi M, Ishida T, Traub O, Corson MA, Berk BC (1997) Mechanotransduction in endothelial cells: temporal signaling events in response to shear stress. J Vasc Res 34(3):212–219
Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci USA 100(4):1484–1489. doi:10.1073/pnas.0235407100
Thery M, Racine V, Piel M, Pepin A, Dimitrov A, Chen Y, Sibarita JB, Bornens M (2006) Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc Natl Acad Sci USA 103(52):19771–19776. doi:10.1073/pnas.0609267103
Ting LH, Jahn JR, Jung JI, Shuman BR, Feghhi S, Han SJ, Rodriguez ML, Sniadecki NJ (2012) Flow mechanotransduction regulates traction forces, intercellular forces, and adherens junctions. Am J Physiol Heart Circ Physiol 302(11):H2220–H2229. doi:10.1152/ajpheart.00975.2011
Tolic-Norrelykke IM, Wang N (2005) Traction in smooth muscle cells varies with cell spreading. J Biomech 38(7):1405–1412. doi:10.1016/j.jbiomech.2004.06.027
Trichet L, Le Digabel J, Hawkins RJ, Vedula SR, Gupta M, Ribrault C, Hersen P, Voituriez R, Ladoux B (2012) Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness. Proc Natl Acad Sci USA 109(18):6933–6938. doi:10.1073/pnas.1117810109
Vaziri A, Gopinath A (2008) Cell and biomolecular mechanics in silico. Nat Mater 7(1):15–23. doi:10.1038/nmat2040
Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7(4):265–275. doi:10.1038/nrm1890
Wang JH, Goldschmidt-Clermont P, Wille J, Yin FC (2001) Specificity of endothelial cell reorientation in response to cyclic mechanical stretching. J Biomech 34(12):1563–1572
Wang JH, Goldschmidt-Clermont P, Yin FC (2000) Contractility affects stress fiber remodeling and reorientation of endothelial cells subjected to cyclic mechanical stretching. Ann Biomed Eng 28(10):1165–1171
Wang JH, Lin JS (2007) Cell traction force and measurement methods. Biomech Model Mechanobiol 6(6):361–371. doi:10.1007/s10237-006-0068-4
Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell-surface and through the cytoskeleton. Science 260(5111):1124–1127. doi:10.1126/science.7684161
Wang N, Ostuni E, Whitesides GM, Ingber DE (2002) Micropatterning tractional forces in living cells. Cell Motil Cytoskelet 52(2):97–106. doi:10.1002/cm.10037
Wang N, Tolic-Norrelykke IM, Chen J, Mijailovich SM, Butler JP, Fredberg JJ, Stamenovic D (2002) Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am J Physiol Cell Physiol 282(3):C606–C616. doi:10.1152/ajpcell.00269.2001
Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 10(1):75–82. doi:10.1038/Nrm2594
Wang YL, Pelham RJ Jr (1998) Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Methods Enzymol 298:489–496
Wang Z, Geng Y (2015) Unidirectional cell crawling model guided by extracellular cues. J Biomech Eng 137(3):031006. doi:10.1115/1.4029301
Warshaw DM, Desrosiers JM, Work SS, Trybus KM (1990) Smooth muscle myosin cross-bridge interactions modulate actin filament sliding velocity in vitro. J Cell Biol 111(2):453–463
Wei Z, Deshpande VS, McMeeking RM, Evans AG (2008) Analysis and interpretation of stress fiber organization in cells subject to cyclic stretch. J Biomech Eng 130(3):031009. doi:10.1115/1.2907745
Weng S, Fu J (2011) Synergistic regulation of cell function by matrix rigidity and adhesive pattern. Biomaterials 32(36):9584–9593. doi:10.1016/j.biomaterials.2011.09.006
Wirtz HR, Dobbs LG (2000) The effects of mechanical forces on lung functions. Respir Physiol 119(1):1–17
Wozniak MA, Chen CS (2009) Mechanotransduction in development: a growing role for contractility. Nat Rev Mol Cell Biol 10(1):34–43. doi:10.1038/nrm2592
Xiao T, Takagi J, Coller BS, Wang JH, Springer TA (2004) Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 432(7013):59–67. doi:10.1038/nature02976
Yang MT, Fu J, Wang YK, Desai RA, Chen CS (2011) Assaying stem cell mechanobiology on microfabricated elastomeric substrates with geometrically modulated rigidity. Nat Protoc 6(2):187–213. doi:10.1038/nprot.2010.189
Yang MT, Sniadecki NJ, Chen CS (2007) Geometric considerations of micro- to nano-scale lastomeric post arrays to study cellular traction forces. Adv Mater 19(20):3119. doi:10.1002/adma.200701956
Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskelet 60(1):24–34. doi:10.1002/cm.20041
Zamir E, Katz M, Posen Y, Erez N, Yamada KM, Katz BZ, Lin S, Lin DC, Bershadsky A, Kam Z, Geiger B (2000) Dynamics and segregation of cell–matrix adhesions in cultured fibroblasts. Nat Cell Biol 2(4):191–196. doi:10.1038/35008607
Zhao Y, Zhang X (2005) Adaptation of flexible polymer fabrication to cellular mechanics study. Appl Phys Lett. doi:10.1063/1.2061861
Acknowledgments
The authors would like to express sincere gratitude to the support from the National Science Foundation of China under Grant No. 51475055.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Geng, Y., Wang, Z. Review of cellular mechanotransduction on micropost substrates. Med Biol Eng Comput 54, 249–271 (2016). https://doi.org/10.1007/s11517-015-1343-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11517-015-1343-2