Skip to main content
Log in

Effect of Longan polysaccharides on proliferation and phenotype maintenance in rabbit articular chondrocytes in vitro

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

For autologous chondrocyte implantation (ACI) to restore cartilage defect, limited cell numbers and dedifferentiation of chondrocytes are the major difficulties. An alternative is the use of growth factors, but the high cost and potential tumorigenesis are the major obstacles. To ensure successful ACI therapy, it is of significance to find effective substituted pro-chondrogenic agent. Polysaccharides from plant extract have low toxicity and few undesirable side effects, which were reported to facilitate cartilage regeneration. In this study, we investigated the effect of Longan polysaccharides (LP) on rabbit articular chondrocytes through examination of the cell proliferation, morphology, viability, glycosaminoglycan synthesis and cartilage-specific gene expression. Results showed that close to the positive group which used the growth factor of TGF-β, LP could effectively promote chondrocytes growth and enhance secretion and synthesis of cartilage extracellular matrix by up-regulating expression levels of aggrecan, collagen II and sox9 compared to the negative control. Expression of collagen I gene was effectively down-regulated, demonstrating the inhibition of chondrocytes dedifferentiation by LP. Hypertrophy that might lead to chondrocyte ossification was also undetectable in LP groups. Range of 4.69–18.76 µg/ml was recommended dose of LP, among which the most profound response was observed with 9.38 μg/ml. All the evidences revealed that LP may replace the growth factors to be applied in ACI therapy. This study might provide a basis for development of a novel agent in the treatment of articular cartilage defect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akiyama H (2011) Transcriptional regulation in chondrogenesis by Sox9. Clin Calcium 21:845–851

    CAS  PubMed  Google Scholar 

  2. Benya PD, Shaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30:215–224

    Article  CAS  PubMed  Google Scholar 

  3. Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B (1999) Sox9 is required for cartilage formation. Nat Genet 22:85–89

    Article  CAS  PubMed  Google Scholar 

  4. Cao YL, Liu T, Pang J, Gao NY, Zhan HS, Shi YY, Wang X, Wang SC (2015) Glucan HBP-A increase type II collagen expression of chondrocytes in vitro and tissue engineered cartilage in vivo. Chin J Integr Med 21:196–203

    Article  CAS  PubMed  Google Scholar 

  5. Carranza-Bencano A, García-Paino L, Armas Padrón JR, Cayuela Dominguez A (2000) Neochondrogenesis in repair of full-thickness articular cartilage defects using free autogenous periosteal grafts in the rabbit. A follow-up in 6 months. Osteoarthr Cartil 8:351–358

    Article  CAS  PubMed  Google Scholar 

  6. Chen J, Chen X, Qin J (2011) Effects of polysaccharides of the Euphoria Longan (Lour.). Steud on focal cerebral ischemia/reperfusion injury and its underlying mechanism. Brain Inj 25:292–299

    Article  PubMed  Google Scholar 

  7. Chung C, Burdick JA (2008) Engineering cartilage tissue. Adv Drug Deliv Rev 60:243–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Davies SR, Chang LW, Patra D, Xing X, Posey K, Hecht J, Stormo GD, Sandell LJ (2007) Computational identification and functional validation of regulatory motifs in cartilage-expressed genes. Genome Res 17:1438–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Downward J, Yarden Y, Mayes E, Scrace G, Totty N, Stockwell P, Ullrich A, Schlessinger J, Waterfield MD (1984) Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature 307:521–527

    Article  CAS  PubMed  Google Scholar 

  10. Forabosco A, Bruno G, Sparapano L, Liut G, Marino D, Delben F (2006) Pullulans produced by strains of Cryphonectria parasitica—I. Production and characterisation of the exopolysaccharides. Carbohydr Polym 63:535–544

    Article  CAS  Google Scholar 

  11. Hsieh PC, Thanapipatsiri S, Anderson PC, Wang GJ, Balian G (2003) Repair of full-thickness cartilage defects in rabbit knees with free periosteal graft preincubated with transforming growth factor. Orthopedics 26:393–402

    PubMed  Google Scholar 

  12. Jiang J, Meng FY, He Z Ning YL, Li XH, Song H, Wang J, Zhou R (2014) Sulfated modification of Longan polysaccharide and its immunomodulatory and antitumor activity in vitro. Int J Biol Macromol 67C:323–329

    Article  Google Scholar 

  13. Josephs SF, Guo C, Ratner L, Wong-Staal F (1984) Human-proto-oncogene nucleotide sequences corresponding to the transforming region of simian sarcoma virus. Science 223:487–491

    Article  CAS  PubMed  Google Scholar 

  14. Karlsen TA, Shahdadfar A, Brinchmann JE (2010) Human primary articular chondrocytes, chondroblasts-like cells, and dedifferentiated chondrocytes: differences in gene, microRNA, and protein expression and phenotype. Tissue Eng Part C Methods 17:219–227

    Article  PubMed  Google Scholar 

  15. Kwan KM, Pang MK, Zhou S, Cowan SK, Kong RY, Pfordte T, Olsen BR, Sillence DO, Tam PP, Cheah KS (1997) Abnormal compartmentalization of cartilage matrix components in mice lacking collagen X: implications for function. J Cell Biol 136:459–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li H, Li X, Liu G, Chen J, Weng X, Liu F, Xu H, Liu X, Ye H (2013) Bauhinia championi (Benth.) Benth. polysaccharides upregulate Wnt/β-catenin signaling in chondrocytes. Int J Mol Med 32:1329–1336

    CAS  PubMed  Google Scholar 

  17. Marshall OJ, Harley VR (2000) Molecular mechanisms of SOX9 action. Mol Gene Metab 71:455–462

    Article  CAS  Google Scholar 

  18. Meng FY, Ning YL, Qi J, He Z, Jie J, Lin JJ, Huang YJ, Li FS, Li XH (2014) Structure and antitumor and immunomodulatory activities of a water-soluble polysaccharide from dimocarpus Longan pulp. Int J Mol Sci 15:5140–5162

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ng LJ, Wheatley S, Muscat GE, Conway-Campbell J, Bowles J, Wright E, Bell DM, Tam PP, Cheah KS, Koopman P (1997) SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev Biol 183:108–121

    Article  CAS  PubMed  Google Scholar 

  20. Panico AM, Cardile V, Garufi F, Puglia C, Bonina F, Ronsisvalle S (2007) Effect of hyaluronic acid and polysaccharides from Opuntia ficus indica (L.) cladodes on the metabolism of humanchondrocyte cultures. J Ethnopharmacol 111:315–321

    Article  CAS  PubMed  Google Scholar 

  21. Paul R, Haydon RC, Cheng H, Ishikawa A, Nenadovich N, Jiang W, Zhou L, Breyer B, Feng T, Gupta P, He TC, Phillips FM (2003) Potential use of Sox9 gene therapy for intervertebral degenerative disc disease. Spine 28:755–763

    PubMed  PubMed Central  Google Scholar 

  22. Popa EG, Reis RL, Gomes ME (2014) Seaweed polysaccharide-based hydrogels used for the regeneration of articular cartilage. Crit Rev Biotechnol. doi:10.3109/07388551.2014.889079

    Google Scholar 

  23. Qin J, Liu YS, Liu J, Li J, Tan Y, Li XJ, Magdalou J, Mei QB, Wang H, Chen LB (2013) Effect of Angelica sinensis polysaccharides on osteoarthritis in vivo and in vitro: a possible mechanism to promote proteoglycans synthesis. Evid Based Complement Altern Med. doi:10.1155/2013/794761

    Google Scholar 

  24. Sánchez M, Anitua E, Azofra J, Andía I, Padilla S, Mujika I (2007) Comparison of surgically repaired Achilles tendon tears using platelet-rich fibrin matrices. Am J Sports Med 35:245–251

    Article  PubMed  Google Scholar 

  25. Schnabel M, Marlovits S, Eckhoff G, Fichtel I, Gotzen L, Vécsei V, Schlegel J (2002) Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthr Cartil 10:62–70

    Article  CAS  PubMed  Google Scholar 

  26. Tew SR, Clegg PD (2011) Analysis of post transcriptional regulation of SOX9 mRNA during In vitro chondrogenesis. Tissue Eng Part A 17:1801–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tew SR, Li Y, Pothacharoen P, Tweats LM, Hawkins RE, Hardingham TE (2005) Retroviral transduction with SOX9 enhances re-expression of the chondrocyte phenotype in passaged osteoarthritic human articular chondrocytes. Osteoarthr Cartil 13:80–89

    Article  PubMed  Google Scholar 

  28. Tsuchiya H, Kitoh H, Sugiura F, Ishiguro N (2003) Chondrogenesis enhanced by overexpression of Sox9 gene in mouse bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun 301:338–343

    Article  CAS  PubMed  Google Scholar 

  29. Verbruggen G, Cornelissen M, Elewaut D, Broddelez C, De Ridder L, Veys EM (1999) Influence of polysulfated polysaccharides on aggrecans synthesized by differentiated human articular chondrocytes. J Rheumatol 26:1663–1671

    CAS  PubMed  Google Scholar 

  30. Waterfield MD, Scrace GT, Whittle N, Stroobant P, Johnsson A, Wasteson A, Westermark B, Heldin CH, Huang JS, Deuel TF (1983) Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus. Nature 304:35–39

    Article  CAS  PubMed  Google Scholar 

  31. Yang B, Zhao MM, Jiang YM (2008) Optimization of tyrosinase inhibition activity of ultrasonic-extracted polysaccharides from Longan fruit pericarp. Food Chem 110:294–300

    Article  CAS  PubMed  Google Scholar 

  32. Yang B, Zhao MM, Jiang YM (2009) Anti-glycated activity of polysaccharides of Longan (Dimocarpus longan Lour.) fruit pericarp treated by ultrasonic wave. Food Chem 114:629–633

    Article  CAS  Google Scholar 

  33. Yang B, Zhao MM, Prasad KN, Jiang GX, Jiang YM (2010) Effect of methylation on the structure and radical scavenging activity of polysaccharides from Longan (Dimocarpus longan Lour.) fruit pericarp. Food Chem 118:364–368

    Article  CAS  Google Scholar 

  34. Yu F, Li X, Cai L, Li H, Chen J, Wong X, Xu H, Zheng C, Liu X, Ye H (2013) Achyranthes bidentata polysaccharides induce chondrocyte proliferation via the promotion of the G1/S cell cycle transition. Mol Med Rep 7:935–940

    CAS  PubMed  Google Scholar 

  35. Zhong K, Wang Q (2010) Optimization of ultrasonic extraction of polysaccharides from dried Longan pulp using response surface methodology. Carbohydr Polym 80:19–25

    Article  CAS  Google Scholar 

  36. Zhong K, Wang Q, He Y, He X (2010) Evaluation of radicals scavenging, immunity-modulatory and antitumor activities of Longan polysaccharides with ultrasonic extraction on in S180 tumor mice models. Int J Biol Macromol 47:356–360

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by National Science and Technology Pillar Program of China (Grant No. 2012BAI42G00) and Guangxi Scientific Research and Technological Development Foundation (Grant No. Guikehe 14125008-2-14), Guangxi Science Fund for Distinguished Young Scholars (Grant No. 2014GXNSFGA118006). This work has been supported by Key Laboratory of Regenerative Medicine of Guangxi High School and Collaborative Innovation Center of Guangxi Biological Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zheng.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest in this manuscript.

Additional information

Shuyu Zhu, Bo Zhou and Qin Liu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Zhou, B., Liu, Q. et al. Effect of Longan polysaccharides on proliferation and phenotype maintenance in rabbit articular chondrocytes in vitro. Med Biol Eng Comput 54, 607–617 (2016). https://doi.org/10.1007/s11517-015-1352-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1352-1

Keywords

Navigation