Skip to main content
Log in

Monitoring reduced scattering coefficient in pedicle screw insertion trajectory using near-infrared spectroscopy

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Pedicle screw (PS) implantation is an ideal treatment for severe multilevel vertebra instabilities. The accuracy of fixating PS is a key factor of spinal surgery. We developed a near-infrared spectroscopy device with a needlelike optical fiber probe to monitor optical parameters (reduced scattering coefficient) of vertebra models in real time. The fresh-frozen cadaver, cats and porcine vertebras were first studied in the experiments. Moreover, the reduced scattering coefficient (μ′ s) along the different trajectories of PS insertion was obtained. In the fresh-frozen cadavera experiment, μ′ s values could be used to distinguish the different compositions of the thoracic vertebra. In cat vertebra experiment, μ′ s values of vertebrae bones, including cortical bone (15.30 ± 0.18 cm−1), cancellous bone (7.84 ± 1.11 cm−1) and spinal cord (19.46 ± 0.21 cm−1), were different in vivo. In the pig vertebrae experiment, there were obvious differences between the normal and abnormal PS puncture curves based on μ′ s values. Thus, μ′ s values measured by using the proposed device could be used as the pattern factor in spinal fusion surgery. Our studies demonstrate that near-infrared spectroscopy method may be potentially used for assisting the PS insertion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abumi K, Shono Y, Ito M, Taneichi H, Kotani Y, Kaneda K (2000) Complications of pedicle screw fixation in reconstructive surgery of the cervical spine. Spine 25:962–969

    Article  CAS  PubMed  Google Scholar 

  2. Alexandrakis G, Rannou FR, Chatziioannou AF (2005) Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study. Phys Med Biol 50:4225–4241

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bolger C, Carozzo C, Roger T, McEvoy L, Naqaria J, Vanacker G, Bourlion M (2006) A preliminary study of reliability of impedance measurement to detect iatrogenic initial pedicle perforation (in the porcine model). Eur Spine J 15:316–320

    Article  PubMed  Google Scholar 

  4. Bolger C, Kelleher MO, McEvoy L, Brayda-Bruno M, Kaelin A, Lazennec JY, Le Huec JC, Logroscino C, Mata P, Moreta P, Saillant G, Zeller R (2007) Electrical conductivity measurement: a new technique to detect iatrogenic initial pedicle perforation. Eur Spine J 16:1919–1924

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brian WP, Gregory B (1998) Fiber-optic bundle design for quantitative fluorescence measurement from tissue. Appl Opt 37:7429–7436

    Article  Google Scholar 

  6. Dai L, Qian Z, Li K, Yang T, Wang H (2008) In vivo detection of reduced scattering coefficient of C6 glioma in rat brain tissue by near-infrared spectroscopy. J Biomed Opt 13:044003

    Article  PubMed  Google Scholar 

  7. Fathy HS (2013) Treatment of lumbar instability by posterior interbody cage fusion and transpedicular fixation. Egypt Orthop J 48:339–343

    Article  Google Scholar 

  8. Fekete TF, Kleinstűck FS, Mannion AF, Kendik ZS, Jeszenszky DJ (2011) Prospective study of the effect of pedicle screw placement on development of the immature vertebra in an in vivo porcine mode. Eur Spine J 20:1892–1898

    Article  PubMed  PubMed Central  Google Scholar 

  9. Holland NR, Kostuik JP (1997) Continuous electromyographic monitoring to detect nerve root injury during thoracolumbar scoliosis surgery. Spine 22:2547–2550

    Article  CAS  PubMed  Google Scholar 

  10. Jae-Han H (2011) Neurosensory tissue morphology with intraoperative optical fiber probe in aqueous medium. Optik 122:1895–1898

    Article  Google Scholar 

  11. Jo DJ, Seo EM, Kim KT, Kim SM, Lee SH (2012) Cervical pedicle screw insertion using the technique with direct exposure of the pedicle by laminoforaminotomy. J Korean Neurosurg Soc 52:459–465

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kim CW, Lee YP, Taylor W, Oyqar A, Kim WK (2008) Use of navigation-assisted fluoroscopy to decrease radiation exposure during minimally invasive spine surgery. Spine 8:584–590

    Article  Google Scholar 

  13. Koller H, Hitzl W, Acosta F, Tauber M, Zenner J, Resch H, Yukawa Y, Meier O, Schmidt R, Mayer M (2009) In vitro study of accuracy of cervical pedicle screw insertion using an electronic conductivity device (ATPS part III). Eur Spine J 18:1300–1313

    Article  PubMed  PubMed Central  Google Scholar 

  14. Le TV, Burkett C, Ramos E, Uribe JS (2012) Occipital condyle screw placement, and occipitocervical instrumentation using three-dimensional image-guided navigation. J Clin Neurosci 19:57–76

    Article  Google Scholar 

  15. Lee CY, Chan SH, Lee ST (2011) A method to develop an in vitro osteoporosis model of porcine vertebrae: histological and biomechanical study. J Neurosurg Spine 14:789–798

    Article  PubMed  Google Scholar 

  16. Li W, Liu Y, Qian Z (2014) Determination of detection depth of optical probe in pedicle screw measurement device. Biomed Eng Online 1:148. doi:10.1186/1475-925X-13-148

    Article  Google Scholar 

  17. Liljenqvist UR, Halm HF, Link TM (1997) Pedicle screw instrumentation of the thoracic spine in idiopathic scoliosis. Spine 22:2239–2245

    Article  CAS  PubMed  Google Scholar 

  18. Lu S, Zhang YZ, Wang Z, Shi JH, Chen YB, Xu XM, Xu YQ (2012) Accuracy and efficacy of thoracic pedicle screw in scoliosis with patient-specific drill template. Med Biol Eng Comput 50:751–758

    Article  PubMed  Google Scholar 

  19. Matcher SJ, Cope M, Delpy DT (1997) In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 nm and 900 nm measured with time-resolved spectroscopy. Appl Opt 36:386–396

    Article  CAS  PubMed  Google Scholar 

  20. Mattheck C, Bethge K, Erb D, Blőmer W (1992) Successful shape optimisation of a pedicle screw. Med Biol Eng Comput 30:446–448

    Article  CAS  PubMed  Google Scholar 

  21. Nichols MG, Hull EL, Foster TH (1997) Design and testing of a white light, steady state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems. Appl Opt 36:93–103

    Article  CAS  PubMed  Google Scholar 

  22. Ochs BG, Gonser C, Sinozawa T, Badke A, Weise K, Rolauffs B, Stuby FM (2010) Computer-assisted periacetabular screw placement: comparison of different fluoroscopy-based navigation procedures with conventional technique. Injury 4:1297–1305

    Article  Google Scholar 

  23. Qian Z, Gu Y, Liu H (2005) In vivo and real time measurement of rat brain reduced scattering coefficient (μ’s). Chin J Med Phys 22:463–465

    Google Scholar 

  24. Ravi B, Zahrai A, Rampersaud R (2011) Clinical accuracy of computer-assisted two-dimensional fluoroscopy for the percutaneous placement of lumbosacral pedicle screws. Spine 36:84–91

    Article  PubMed  Google Scholar 

  25. Roy-Camille R, Saillant G, Mazel C (1986) Internal fixation of the lumbar spine with pedicle screw plating. Clin Orthop Relat Res 203:7–17

    PubMed  Google Scholar 

  26. Sarlak AY, Buluq L, Sarisoy HT, Memisoqlu K, Tosun B (2008) Placement of pedicle screws in thoracic idiopathic scoliosis: a magnetic resonance imaging analysis of screw placement relative to structures at risk. Eur Spine J 17:657–662

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schizas C, Michel J, Kosmopoulos V, Theumann N (2007) Computer tomography assessment of pedicle screw insertion in percutaneous posterior transpedicular stabilization. Eur Spine J 16:613–617

    Article  PubMed  Google Scholar 

  28. Sclafani JA, Reqev GJ, Webb J, Garfin SR, Kim CW (2011) Use of a quantitative pedicle screw accuracy system to assess new technology: initial studies on O-arm navigation and its effect on the learning curve of percutaneous pedicle screw insertion. SAS J 5:57–62

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sembrano JN, Polly DW Jr, Ledonio CG, Santos ER (2012) Intraoperative 3-dimensional imaging (O-arm) for assessment of pedicle screw position: does it prevent unacceptable screw placement? Int J Spine Surg 6:49–54

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shin SI, Yeom JS, Kim HJ, Chang BS, Lee CK, Riew KD (2012) The feasibility of laminar screw placement in the subaxial spine: analysis using 215 three-dimensional computed tomography scans and simulation software. Spine J 12:577–584

    Article  PubMed  Google Scholar 

  31. Steven LJ (2013) Optical properties of biological tissue: a review. Phys Med Biol 58:37–61

    Google Scholar 

  32. von Jako R, Finn MA, Yonemura KS, Araqhi A, Khoo LT, Carrino JA, Perez-Cruet M (2011) Minimally invasive percutaneous transpedicular screw fixation: increased accuracy and reduced radiation exposure by means of a novel electromagnetic navigation system. Acta Neurochir 153:589–596

    Article  Google Scholar 

  33. Wu H, Gao ZL, Wang JC, Li YP, Xia P, Jiang R (2010) Pedicle screw placement in the thoracic spine: a randomized comparison study of computer-assisted navigation and conventional techniques. Chin J Traumatol 13:201–205

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities, NO. NS2015032 and National Natural Science Foundation of China (61275199 and 61378092).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weitao Li.

Ethics declarations

Conflict of interests

None of the authors have conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Liu, Y., Sun, H. et al. Monitoring reduced scattering coefficient in pedicle screw insertion trajectory using near-infrared spectroscopy. Med Biol Eng Comput 54, 1533–1539 (2016). https://doi.org/10.1007/s11517-015-1428-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1428-y

Keywords

Navigation