Skip to main content
Log in

Design of a video capsule endoscopy system with low-power ASIC for monitoring gastrointestinal tract

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In recent years, wireless capsule endoscopy (WCE) has been a state-of-the-art tool to examine disorders of the human gastrointestinal tract painlessly. However, system miniaturization, enhancement of the image-data transfer rate and power consumption reduction for the capsule are still key challenges. In this paper, a video capsule endoscopy system with a low-power controlling and processing application-specific integrated circuit (ASIC) is designed and fabricated. In the design, these challenges are resolved by employing a microimage sensor, a novel radio frequency transmitter with an on–off keying modulation rate of 20 Mbps, and an ASIC structure that includes a clock management module, a power-efficient image compression module and a power management unit. An ASIC-based prototype capsule, which measures Φ11 mm × 25 mm, has been developed here. Test results show that the designed ASIC consumes much less power than most of the other WCE systems and that its total power consumption per frame is the least. The image compression module can realize high near-lossless compression rate (3.69) and high image quality (46.2 dB). The proposed system supports multi-spectral imaging, including white light imaging and autofluorescence imaging, at a maximum frame rate of 24 fps and with a resolution of 400 × 400. Tests and in vivo trials in pigs have proved the feasibility of the entire system, but further improvements in capsule control and compression performance inside the ASIC are needed in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alonso O, Freixas L, Dieguez A (2009) Advancing towards smart endoscopy with specific electronics to enable locomotion and focusing capabilities in a wireless endoscopic capsule robot. In: BioCAS 2009, IEEE Conference on, pp 213–216

  2. Basar MR, Malek F, Juni KM et al (2012) Ingestible wireless capsule technology: a review of development and future indication. Int J Antennas Propag. doi:10.1155/2012/807165

    Google Scholar 

  3. Basar MR, Malek FI, Mohd M et al (2013) A novel, high-speed image transmitter for wireless capsule endoscopy. Prog Electromagn Res 137:129–147

    Article  Google Scholar 

  4. Basar MR, Malek F, Juni KM et al (2013) The use of a human body model to determine the variation of path losses in the human body channel in wireless capsule endoscopy. Prog Electromagn Res 133:495–513

    Article  Google Scholar 

  5. Cavallotti C, Merlino P, Vatteroni M et al (2011) An FPGA-based versatile development system for endoscopic capsule design optimization. Sens Actuators, A 172:301–307

    Article  CAS  Google Scholar 

  6. Chen X, Zhang X, Zhang L et al (2009) A wireless capsule endoscope system with low power controlling and processing ASIC. IEEE Trans Biomed Circuits Syst 3:11–22

    Article  Google Scholar 

  7. Cheng C, Liu Z, Hu C, Meng MQ (2010) A novel wireless capsule endoscope with JPEG compression engine. In: Automation and Logistics, IEEE Conference on, pp 553–558

  8. Ciuti G, Menciassi A, Dario P (2011) Capsule endoscopy: from current achievements to open challenges. IEEE Rev Biomed Eng 4:59–72

    Article  PubMed  Google Scholar 

  9. Eom K, Jeong J, Lee TH et al (2014) A wireless power transmission system for implantable devices in freely moving rodents. Med Biol Eng Compu 52:639–651

    Article  Google Scholar 

  10. Gholamzadeh B, Nabovati H (2008) Concepts for designing low power wireless sensor network. World Acad Sci Eng Technol 45:559–565

    Google Scholar 

  11. http://www.olympus-europa.com. Accessed 25 April 2015

  12. http://www.rfsystemlab.com/en/sayaka/index.html. Accessed 25 April 2015

  13. http://www.intromedic.com/eng. Accessed 26 April 2015

  14. Iddan G, Meron G, Glukhovsky A, Swain P (2000) Wireless capsule endoscopy. Nature 405:417–418

    Article  CAS  PubMed  Google Scholar 

  15. Karargyris A, Koulaouzidis A (2015) OdoCapsule: next-generation wireless capsule endoscopy with accurate lesion localization and video stabilization capabilities. IEEE Trans Biomed Eng 62(1):352–360

    Article  PubMed  Google Scholar 

  16. Kim K, Yun S, Lee S, Nam S, Yoon YJ, Cheon C (2012) A design of a high-speed and high-efficiency capsule endoscopy system. IEEE Trans Biomed Eng 59:1005–1011

    Article  PubMed  Google Scholar 

  17. Koulaouzidis A, Iakovidis DK, Karargyris A et al (2015) Wireless endoscopy in 2020: will it still be a capsule? World J Gastroenterol 21(17):5119

    Article  PubMed  PubMed Central  Google Scholar 

  18. Metzger YC, Adler SN, Shitrit AB et al (2009) Comparison of a new PillCam™ SB2 video capsule versus the standard PillCam™ SB for detection of small bowel disease. Rep Med Imaging 2(1):7–11

    Google Scholar 

  19. Miaou S, Chen S (2005) A data compression method for long sequence of wireless capsule endoscope images. J Med Biol Eng 25:107–116

    Google Scholar 

  20. Neumann H, Fry LC, Nägel A, Neurath MF (2014) Wireless capsule endoscopy of the small intestine: a review with future directions. Curr Opin Gastroenterol 30:463–471

    Article  PubMed  Google Scholar 

  21. Pan G, Wang L (2012) Swallowable wireless capsule endoscopy: progress and technical challenges. Gastroenterol Res Pract. doi:10.1155/2012/841691

    PubMed  Google Scholar 

  22. Pan G, Xin W, Yan G, Chen J (2011) A video wireless capsule endoscopy system powered wirelessly: design, analysis and experiment. Meas Sci Technol 22:065802

    Article  Google Scholar 

  23. Poomrittigul S, Ogawa M, Iwahashi M, Kiya H (2013) Reversible color transform for Bayer color filter array images. APSIPA Trans Signal Inform Process 2:e5

    Article  Google Scholar 

  24. Rasouli M, Kencana AP, Huynh VA et al (2011) Ingestible wireless capsules for enhanced diagnostic inspection of gastrointestinal tract. Front Mech Eng 6:40–44

    Google Scholar 

  25. Ryu M, Kim JD, Chin HU et al (2007) Three-dimensional power receiver for in vivo robotic capsules. Med Biol Eng Compu 45:997–1002

    Article  Google Scholar 

  26. Tareq TH, Shrestha R, Wahid KA, Babyn P (2015) Design of a smart-device and FPGA based wireless capsule endoscopic system. Sens Actuators, A 221:77–87

    Article  Google Scholar 

  27. Turcza P, Duplaga M (2011) Low power FPGA-based image processing core for wireless capsule endoscopy. Sens Actuators, A 172:552–560

    Article  CAS  Google Scholar 

  28. Van GA (2014) Wireless capsule endoscopy of the large intestine: a review with future projections. Curr Opin Gastroenterol 30:472–476

    Article  Google Scholar 

  29. Vatteroni M, Covi D, Cavallotti C et al (2010) Smart optical CMOS sensor for endoluminal applications. Sens Actuators, A 162:297–303

    Article  CAS  Google Scholar 

  30. Wang A, Banerjee S, Barth BA et al (2013) Wireless capsule endoscopy. Gastrointest Endosc 78:805–815

    Article  PubMed  Google Scholar 

  31. Woo SH, Cho JH (2010) Telemetry system for slow wave measurement from the small bowel. Med Biol Eng Compu 48:277–283

    Article  CAS  Google Scholar 

  32. Xie X, Li G, Wang Z (2006) A low-complexity and high-quality image compression method for digital cameras. ETRI J 28:260–263

    Article  Google Scholar 

  33. Zhang N, Wu X (2006) Lossless compression of color mosaic images. IEEE Trans Image Process 15:1379–1388

    Article  PubMed  Google Scholar 

  34. Zhu B, Yan G, Liu G, Shi Y (2014) Design of a dual-head video capsule endoscopy system based on wireless power transmission technology. J Med Biol Eng. doi:10.5405/jmbe.1841

    Google Scholar 

Download references

Acknowledgments

This paper is under the supports of the National Natural Science Foundation of China (NSFC) (No. 31170968) and Shanghai Scientific Project (No. 14441902800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Yan, G., Zhu, B. et al. Design of a video capsule endoscopy system with low-power ASIC for monitoring gastrointestinal tract. Med Biol Eng Comput 54, 1779–1791 (2016). https://doi.org/10.1007/s11517-016-1472-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1472-2

Keywords

Navigation