Skip to main content
Log in

Causal analysis of short-term cardiovascular variability: state-dependent contribution of feedback and feedforward mechanisms

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Baroreflex function is usually assessed from spontaneous oscillations of blood pressure (BP) and cardiac RR interval assuming a unidirectional influence from BP to RR. However, the interaction of BP and RR is bidirectional—RR also influences BP. Novel methods based on the concept of Granger causality were recently developed for separate analysis of feedback (baroreflex) and feedforward (mechanical) interactions between RR and BP. We aimed at assessing the proportion of the two causal directions of the interactions between RR and systolic BP (SBP) oscillations during various conditions, and at comparing causality measures from SBP to RR with baroreflex gain indexes. Arterial BP and ECG signals were noninvasively recorded in 16 young healthy volunteers during supine rest, mental arithmetics, and head-up tilt test, as well as during the combined administration of these stressors. The causal interactions between beat-to-beat RR and SBP signals were analyzed in time, frequency, and information domains. The baroreflex gain was assessed in the frequency domain using non-causal and causal measures of the transfer function from SBP to RR. We found a consistent increase in the baroreflex coupling strength from SBP to RR during head-up tilt, an insensitivity of the coupling strength along the non-baroreflex direction to both stressors, and no significant effect of mental arithmetics on the feedback coupling strength. It indicates that the proportion of causal interactions between SBP and RR significantly varies during different conditions. The increase in the coupling from SBP to RR with tilt was not accompanied by concomitant variations of the transfer function gain, suggesting that causality and gain analyses are complementary and assess different aspects of the baroreflex regulation of heart rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aletti F, Bassani T, Lucini D et al (2009) Multivariate decomposition of arterial blood pressure variability for the assessment of arterial control of circulation. IEEE Trans Biomed Eng 56(7):1781–1790

    Article  PubMed  Google Scholar 

  2. Barbieri R, Parati G, Saul JP (2001) Closed-versus open-loop assessment of heart rate baroreflex. IEEE Eng Med Biol Mag 20(2):33–42

    Article  CAS  PubMed  Google Scholar 

  3. Baselli G, Cerutti S, Civardi S et al (1988) Cardiovascular variability signals: towards the identification of a closed-loop model of the neural control mechanisms. IEEE Trans Biomed Eng 35(12):1033–1046

    Article  CAS  PubMed  Google Scholar 

  4. Baselli G, Cerutti S, Livraghi M et al (1988) Causal relationship between heart rate and arterial blood pressure variability signals. Med Biol Eng Comput 26(4):374–378

    Article  CAS  PubMed  Google Scholar 

  5. Baselli G, Cerutti S, Badilini F et al (1994) Model for the assessment of heart period and arterial pressure variability interactions and of respiration influences. Med Biol Eng Comput 32(2):143–152

    Article  CAS  PubMed  Google Scholar 

  6. Berntson GG, Cacioppo JT, Binkley PF, Uchino BN, Quigley KS, Fieldstone A (1994) Autonomic cardiac control. III. Psychological stress and cardiac response in autonomic space as revealed by pharmacological blockades. Psychophysiology 31(6):599–608

    Article  CAS  PubMed  Google Scholar 

  7. Eckberg DL, Sleight P (1992) Human baroreflexes in health and disease. Clarendon Press, Oxford

    Google Scholar 

  8. Faes L, Erla S, Nollo G (2012) Measuring connectivity in linear multivariate processes: definitions, interpretation, and practical analysis. Comput Math Methods Med 2012 Article ID 140513. doi:10.1155/2012/140513

  9. Faes L, Marinazzo D, Montalto A, Nollo G (2014) Lag-specific transfer entropy as a tool to assess cardiovascular and cardiorespiratory information transfer. IEEE Trans Biomed Eng 61(10):2556–2568. doi:10.1109/TBME.2014.2323131

    Article  PubMed  Google Scholar 

  10. Faes L, Mase M, Nollo G, Chon KH, Florian JP (2013) Measuring postural-related changes of spontaneous baroreflex sensitivity after repeated long-duration diving: frequency domain approaches. Auton Neurosci 178(1–2):96–102. doi:10.1016/j.autneu.2013.03.006

    Article  PubMed  Google Scholar 

  11. Faes L, Nollo G, Chon KH (2008) Assessment of Granger causality by nonlinear model identification: application to short-term cardiovascular variability. Ann Biomed Eng 36(3):381–395. doi:10.1007/s10439-008-9441-z

    Article  PubMed  Google Scholar 

  12. Faes L, Nollo G, Porta A (2011) Information domain approach to the investigation of cardio-vascular, cardio-pulmonary, and vasculo-pulmonary causal couplings. Front Physiol 2:80. doi:10.3389/fphys.2011.00080

    Article  PubMed  PubMed Central  Google Scholar 

  13. Faes L, Nollo G, Porta A (2012) Non-uniform multivariate embedding to assess the information transfer in cardiovascular and cardiorespiratory variability series. Comput Biol Med 42:290–297. doi:10.1016/j.compbiomed.2011.02.007

    Article  PubMed  Google Scholar 

  14. Faes L, Nollo G, Porta A (2013) Mechanisms of causal interaction between short-term RR interval and systolic arterial pressure oscillations during orthostatic challenge. J Appl Physiol 114(12):1657–1667. doi:10.1152/japplphysiol.01172.2012

    Article  PubMed  Google Scholar 

  15. Faes L, Porta A (2014) Conditional entropy-based evaluation of information dynamics in physiological systems. In: Vicente R, Wibral M, Lizier JT (eds) Directed information measures in neuroscience. Springer, Berlin, pp 61–86

    Chapter  Google Scholar 

  16. Granger CWJ (1963) Economic processes involving feedback. Inf Control 6:28–48

    Article  Google Scholar 

  17. Julien C (2006) The enigma of Mayer waves: facts and models. Cardiovasc Res 70(1):12–21

    Article  CAS  PubMed  Google Scholar 

  18. Kuipers NT, Sauder CL, Carter JR, Ray CA (2008) Neurovascular responses to mental stress in the supine and upright postures. J Appl Physiol 104:1129–1136. doi:10.1152/japplphysiol.01285.2007

    Article  PubMed  PubMed Central  Google Scholar 

  19. La Rovere MT, Pinna GD, Maestri R, Sleight P (2013) Clinical value of baroreflex sensitivity. Neth Heart J 21:61–63. doi:10.1007/s12471-012-0349-8

    Article  PubMed  Google Scholar 

  20. Lackner KL, Papousek I, Batzel JJ, Roessler A, Scharfetter H, Hinghofer-Szalkay H (2011) Phase synchronization of hemodynamic variables and respiration during mental challenge. Int J Psychophysiol 79:401–409. doi:10.1016/j.ijpsycho.2011.01.001

    Article  PubMed  Google Scholar 

  21. Ljung L (1987) System identification: theory for the user. Prentice Hall, Englewood Cliffs

    Google Scholar 

  22. Lucini D, Porta A, Milani O et al (2000) Assessment of arterial and cardiopulmonary baroreflex gains from simultaneous recordings of spontaneous cardiovascular and respiratory variability. J Hypertens 18(3):281–286

    Article  CAS  PubMed  Google Scholar 

  23. Lutkepohl H (1993) Introduction to multiple time series analysis. Springer, Berlin

    Book  Google Scholar 

  24. Melillo P, Bracale M, Pecchia L (2011) Nonlinear Heart Rate Variability features for real-life stress detection. Case study: students under stress due to university examination. Biomed Eng Online 10:96

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mullen TJ, Appel ML, Mukkamala R et al (1997) System identification of closed loop cardiovascular control: effects of posture and autonomic blockade. Am J Physiol 272(1 Pt 2):H448–H461

    CAS  PubMed  Google Scholar 

  26. Nollo G, Faes L, Porta A, Antolini R, Ravelli F (2005) Exploring directionality in spontaneous heart period and systolic pressure variability interactions in humans: implications in the evaluation of baroreflex gain. Am J Physiol Heart Circ Physiol 288:H1777–H1785

    Article  CAS  PubMed  Google Scholar 

  27. Paton JF, Boscan P, Pickering AE, Nalivaiko E (2005) The yin and yang of cardiovascular autonomic control: vago-sympathetic interactions revisited. Brain Res Rev 49:555–565

    Article  CAS  PubMed  Google Scholar 

  28. Pinna GD, Maestri R (2002) New criteria for estimating baroreflex sensitivity using the transfer function method. Med Biol Eng Comput 40(1):79–84

    Article  CAS  PubMed  Google Scholar 

  29. Pinna GD, Maestri R, Raczak G et al (2002) Measuring baroreflex sensitivity from the gain function between arterial pressure and heart period. Clin Sci (Lond) 103(1):81–88

    Article  Google Scholar 

  30. Porta A, Baselli G, Rimoldi O et al (2000) Assessing baroreflex gain from spontaneous variability in conscious dogs: role of causality and respiration. Am J Physiol 279(5):H2558–H2567

    CAS  Google Scholar 

  31. Porta A, Bassani T, Bari V, Pinna GD, Maestri R, Guzzetti S (2012) Accounting for respiration is necessary to reliably infer granger causality from cardiovascular variability series. IEEE T Biomed Eng 59:832–841. doi:10.1109/TBME.2011.2180379

    Article  Google Scholar 

  32. Porta A, Furlan R, Rimoldi O, Pagani M, Malliani A, van de Borne P (2002) Quantifying the strength of the linear causal coupling in closed loop interacting cardiovascular variability signals. Biol Cybern 86:241–251

    Article  CAS  PubMed  Google Scholar 

  33. Porta A, Faes L (2013) Assessing causality in brain dynamics and cardiovascular control. Philos Trans R Soc A Math Phys Eng Sci 371(1997):20120517

    Article  Google Scholar 

  34. Porta A, Faes L (2016) Wiener-Granger causality in network physiology with applications to cardiovascular control and neuroscience. Proc IEEE 104(2):282–309

    Article  Google Scholar 

  35. Robbe HWJ, Mulder LJM, Ruddel H et al (1987) Assessment of baroreceptor reflex sensitivity by means of spectral analysis. Hypertension 10:538–543

    Article  CAS  PubMed  Google Scholar 

  36. Saperova E, Dimitriev D (2015) Heart rate variability as a measure of autonomic regulation of cardiac activity during mental stress. FASEB J. doi:10.1096/fj.1530-6860

    Google Scholar 

  37. Schulz S, Adochiei FC, Edu IR et al (2013) Cardiovascular and cardiorespiratory coupling analyses: a review. Philos Trans R Soc A 371(1997):20120191

    Article  Google Scholar 

  38. Taylor JA, Eckberg DL (1996) Fundamental relations between short-term RR interval and arterial pressure oscillations in humans. Circulation 93:1527–1532

    Article  CAS  PubMed  Google Scholar 

  39. Toska K, Eriksen M (1993) Respiration-synchronous fluctuations in stroke volume, heart rate and arterial pressure in humans. J Physiol 472:501–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Triedman JK, Saul JP (1994) Blood pressure modulation by central venous pressure and respiration. Buffering effects of the heart rate reflexes. Circulation 89:169–179

    Article  CAS  PubMed  Google Scholar 

  41. Widjaja D, Montalto A, Vlemincx E, Marinazzo D, Van Huffel S, Faes L (2015) Cardiorespiratory information dynamics during mental arithmetic and sustained attention. PLoS One 10(6):e0129112. doi:10.1371/journal.pone.0129112

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wiener N (1956) The theory of prediction. McGraw-Hill, New York

    Google Scholar 

Download references

Acknowledgments

The study was supported by grants APVV-0235-12, VEGA 1/0059/13 and project “Biomedical Center Martin,” ITMS code: 26220220187, and the project is co-financed from EU sources. Luca Faes was supported by the Healthcare Research Implementation Program (IRCS), Provincia Autonoma di Trento and Bruno Kessler Foundation, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Javorka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javorka, M., Czippelova, B., Turianikova, Z. et al. Causal analysis of short-term cardiovascular variability: state-dependent contribution of feedback and feedforward mechanisms. Med Biol Eng Comput 55, 179–190 (2017). https://doi.org/10.1007/s11517-016-1492-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1492-y

Keywords

Navigation