Skip to main content

Advertisement

Log in

Using ELM-based weighted probabilistic model in the classification of synchronous EEG BCI

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Extreme learning machine (ELM) is an effective machine learning technique with simple theory and fast implementation, which has gained increasing interest from various research fields recently. A new method that combines ELM with probabilistic model method is proposed in this paper to classify the electroencephalography (EEG) signals in synchronous brain–computer interface (BCI) system. In the proposed method, the softmax function is used to convert the ELM output to classification probability. The Chernoff error bound, deduced from the Bayesian probabilistic model in the training process, is adopted as the weight to take the discriminant process. Since the proposed method makes use of the knowledge from all preceding training datasets, its discriminating performance improves accumulatively. In the test experiments based on the datasets from BCI competitions, the proposed method is compared with other classification methods, including the linear discriminant analysis, support vector machine, ELM and weighted probabilistic model methods. For comparison, the mutual information, classification accuracy and information transfer rate are considered as the evaluation indicators for these classifiers. The results demonstrate that our method shows competitive performance against other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahmed N, Campbell M (2011) Variational bayesian learning of probabilistic discriminative models with latent softmax variables. IEEE Trans Signal Process 59:3143–3154. doi:10.1109/TSP.2011.2144587

    Article  Google Scholar 

  2. Bhattacharyya S, Konar A, Tibarewala DN (2014) Motor imagery, P300 and error-related EEG-based robot arm movement control for rehabilitation purpose. Med Biol Eng Comput 52:1007–1017. doi:10.1007/s11517-014-1204-4

    Article  PubMed  Google Scholar 

  3. Carlson T, Del R, Millan J (2013) Brain-controlled wheelchairs: a robotic architecture. IEEE Robot Autom Mag 20:65–73. doi:10.1109/MRA.2012.2229936

    Article  Google Scholar 

  4. Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol (TIST) 2:27

    Google Scholar 

  5. Corralejo R, Nicolas-Alonso LF, Alvarez D, Hornero R (2014) A P300-based brain-computer interface aimed at operating electronic devices at home for severely disabled people. Med Biol Eng Comput 52:861–872. doi:10.1007/s11517-014-1191-5

    Article  PubMed  Google Scholar 

  6. Coyle D, McGinnity TM, Prasad G (2010) Improving the separability of multiple EEG features for a BCI by neural-time-series-prediction-preprocessing. Biomed Signal Process Control 5:196–204. doi:10.1016/j.bspc.2010.03.004

    Article  Google Scholar 

  7. Dahne S, Biessmann F, Meinecke FC et al (2013) Integration of multivariate data streams with bandpower signals. IEEE Trans Multimedia 15:1001–1013. doi:10.1109/TMM.2013.2250267

    Article  Google Scholar 

  8. del Millan JR, Mourino J (2003) Asynchronous BCI and local neural classifiers: an overview of the adaptive brain interface project. IEEE Trans Neural Syst Rehabil Eng 11:159–161. doi:10.1109/TNSRE.2003.814435

    Article  Google Scholar 

  9. Duda RO (2001) Pattern classification, 2nd edn. Wiley-Interscience, New York

    Google Scholar 

  10. Fabiani GE, McFarland DJ, Wolpaw JR, Pfurtscheller G (2004) Conversion of EEG activity into cursor movement by a brain-computer interface (BCI). IEEE Trans Neural Syst Rehabil Eng 12:331–338. doi:10.1109/TNSRE.2004.834627

    Article  PubMed  Google Scholar 

  11. Han Y, He B (2014) Brain-computer interfaces using sensorimotor rhythms: current state and future perspectives. IEEE Trans Biomed Eng 61:1425–1435. doi:10.1109/TBME.2014.2312397

    Article  Google Scholar 

  12. Hawkins GE, Mittner M, Boekel W et al (2015) Toward a model-based cognitive neuroscience of mind wandering. Neuroscience 310:290–305. doi:10.1016/j.neuroscience.2015.09.053

    Article  CAS  PubMed  Google Scholar 

  13. Hazrati MK, Erfanian A (2010) An online EEG-based brain-computer interface for controlling hand grasp using an adaptive probabilistic neural network. Med Eng Phys 32:730–739. doi:10.1016/j.medengphy.2010.04.016

    Article  PubMed  Google Scholar 

  14. Horki P, Solis-Escalante T, Neuper C, Muller-Putz G (2011) Combined motor imagery and SSVEP based BCI control of a 2 DoF artificial upper limb. Med Biol Eng Comput 49:567–577. doi:10.1007/s11517-011-0750-2

    Article  PubMed  Google Scholar 

  15. Huang G-B, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B Cybern 42:513–529. doi:10.1109/TSMCB.2011.2168604

    Article  Google Scholar 

  16. Huang G-B, Zhu Q-Y, Mao KZ et al (2006) Can threshold networks be trained directly? IEEE Trans Circuits Syst II Express Briefs 53:187–191. doi:10.1109/TCSII.2005.857540

    Article  Google Scholar 

  17. Kayikcioglu T, Aydemir O (2010) A polynomial fitting and k-NN based approach for improving classification of motor imagery BCI data. Pattern Recogn Lett 31:1207–1215. doi:10.1016/j.patrec.2010.04.009

    Article  Google Scholar 

  18. Leeb R, Lee F, Keinrath C et al (2007) Brain-computer communication: motivation, aim, and impact of exploring a virtual apartment. IEEE Trans Neural Syst Rehabil Eng 15:473–482. doi:10.1109/TNSRE.2007.906956

    Article  PubMed  Google Scholar 

  19. Lei X, Yang P, Yao D (2009) An empirical bayesian framework for brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng 17:521–529. doi:10.1109/TNSRE.2009.2027705

    Article  PubMed  Google Scholar 

  20. Lemm S, Schafer C, Curio G (2004) BCI competition 2003-data set III: probabilistic modeling of sensorimotor mu; rhythms for classification of imaginary hand movements. IEEE Trans Biomed Eng 51:1077–1080. doi:10.1109/TBME.2004.827076

    Article  PubMed  Google Scholar 

  21. Liu X, Gao C, Li P (2012) A comparative analysis of support vector machines and extreme learning machines. Neural Netw 33:58–66. doi:10.1016/j.neunet.2012.04.002

    Article  PubMed  Google Scholar 

  22. Nicolas-Alonso LF, Gomez-Gil J (2012) Brain computer interfaces, a review. Sensors 12:1211–1279. doi:10.3390/s120201211

    Article  PubMed  PubMed Central  Google Scholar 

  23. Park S-A, Hwang H-J, Lim J-H et al (2013) Evaluation of feature extraction methods for EEG-based brain-computer interfaces in terms of robustness to slight changes in electrode locations. Med Biol Eng Comput 51:571–579. doi:10.1007/s11517-012-1026-1

    Article  PubMed  Google Scholar 

  24. Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110:1842–1857. doi:10.1016/S1388-2457(99)00141-8

    Article  CAS  PubMed  Google Scholar 

  25. Rakotomamonjy A, Guigue V (2008) BCI competition III: dataset II-ensemble of SVMs for BCI P300 speller. IEEE Trans Biomed Eng 55:1147–1154. doi:10.1109/TBME.2008.915728

    Article  PubMed  Google Scholar 

  26. Ratcliff R, McKoon G (2007) The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput 20:873–922. doi:10.1162/neco.2008.12-06-420

    Article  Google Scholar 

  27. Rieke F, Warland D, Steveninck RDRV, Bialek W (1999) Spikes: exploring the neural code, New edn. MIT Press, Cambridge

    Google Scholar 

  28. Rivet B, Cecotti H, Perrin M et al (2011) Adaptive training session for a P300 speller brain-computer interface. J Physiol Paris 105:123–129. doi:10.1016/j.jphysparis.2011.07.013

    PubMed  Google Scholar 

  29. Scherer R, Muller GR, Neuper C et al (2004) An asynchronously controlled EEG-based virtual keyboard: improvement of the spelling rate. IEEE Trans Biomed Eng 51:979–984. doi:10.1109/TBME.2004.827062

    Article  PubMed  Google Scholar 

  30. Schlogl A, Brunner C (2008) BioSig: a free and open source software library for BCI research. Computer 41:44–50. doi:10.1109/MC.2008.407

    Article  Google Scholar 

  31. Schlogl A, Lee F, Bischof H, Pfurtscheller G (2005) Characterization of four-class motor imagery EEG data for the BCI-competition 2005. J Neural Eng 2:L14–L22. doi:10.1088/1741-2560/2/4/L02

    Article  PubMed  Google Scholar 

  32. Schlogl A, Keinrath C, Scherer R, Furtscheller P (2003) Information transfer of an EEG-based brain computer interface. In: Proceedings of first international IEEE EMBS conference on neural engineering, 2003. pp. 641–644

  33. Vidaurre C, Kramer N, Blankertz B, Schlgl A (2009) Time domain parameters as a feature for EEG-based Brain–Computer interfaces. Neural Netw 22:1313–1319. doi:10.1016/j.neunet.2009.07.020

    Article  PubMed  Google Scholar 

  34. Vidaurre C, Pascual J, Ramos-Murguialday A et al (2013) Neuromuscular electrical stimulation induced brain patterns to decode motor imagery. Clin Neurophysiol 124:1824–1834. doi:10.1016/j.clinph.2013.03.009

    Article  CAS  PubMed  Google Scholar 

  35. Yuan Q, Zhou W, Li S, Cai D (2011) Epileptic EEG classification based on extreme learning machine and nonlinear features. Epilepsy Res 96:29–38. doi:10.1016/j.eplepsyres.2011.04.013

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant 61175064, 61273314 and 61403427, in part by Postdoctoral Research Plan Foundation of Hunan Province under Grant 2014RS4029, in part by Postdoctoral Foundation of Central South University under Grant 126649, in part by the Innovation-driven Plan in Central South University under Grant 2015CXS012 and Grant 2015CX007, and in part by the Program for New Century Excellent Talents in University under Grant NCET-13-0596.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-qun Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, P., Tan, Gz., Cai, Zx. et al. Using ELM-based weighted probabilistic model in the classification of synchronous EEG BCI. Med Biol Eng Comput 55, 33–43 (2017). https://doi.org/10.1007/s11517-016-1493-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1493-x

Keywords

Navigation