Abstract
The segmentation of liver tumours in CT images is useful for the diagnosis and treatment of liver cancer. Furthermore, an accurate assessment of tumour volume aids in the diagnosis and evaluation of treatment response. Currently, segmentation is performed manually by an expert, and because of the time required, a rough estimate of tumour volume is often done instead. We propose a semi-automatic segmentation method that makes use of machine learning within a deformable surface model. Specifically, we propose a deformable model that uses a voxel classifier based on a multilayer perceptron (MLP) to interpret the CT image. The new deformable model considers vertex displacement towards apparent tumour boundaries and regularization that promotes surface smoothness. During operation, a user identifies the target tumour and the mesh then automatically delineates the tumour from the MLP processed image. The method was tested on a dataset of 40 abdominal CT scans with a total of 95 colorectal metastases collected from a variety of scanners with variable spatial resolution. The segmentation results are encouraging with a Dice similarity metric of \(0.80 \pm 0.11\) and demonstrates that the proposed method can deal with highly variable data. This work motivates further research into tumour segmentation using machine learning with more data and deeper neural networks.







Similar content being viewed by others
References
Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Ssstrunk S (2010) Slic superpixels. Technical report
Baladhandapani A, Nachimuthu DS (2014) Evolutionary learning of spiking neural networks towards quantification of 3D MRI brain tumor tissues. Soft Comput 19(7):1803–1816
Chapiro J, Duran R, Lin M, Schernthaner RE, Wang Z, Gorodetski B, Geschwind JF (2015) Identifying staging markers for hepatocellular carcinoma before transarterial chemoembolization: comparison of three-dimensional quantitative versus nonthree-dimensional imaging markers. Radiology 275(2):438–447
Cohen AB, Diamant I, Klang E, Amitai M, Greenspan H (2014) Automatic detection and segmentation of liver metastatic lesions on serial CT examinations. In: SPIE Medical Imaging, International Society for Optics and Photonics 903519–903519
Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signals Syst 2(4):303–314
Dahl G, Sainath T, Hinton G (2013) Improving deep neural networks for LVCSR using rectified linear units and dropout. In: 2013 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 8609–8613
Durst C, Tustison N, Wintermark M, Avants B (2013) Ants and Rboles. In: Proceedings of BRATS Challenge—MICCAI
Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247
Hame Y (2008) Liver tumor segmentation using implicit surface evolution. Midas J. http://hdl.handle.net/10380/1440
Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin PM, Larochelle H (2015) Brain tumor segmentation with deep neural networks. arXiv preprint arXiv:1505.03540
Heimann T, Van Ginneken B, Styner M, Arzhaeva Y, Aurich V, Bauer C, Beck A, Becker C, Beichel R, Bekes G et al (2009) Comparison and evaluation of methods for liver segmentation from ct datasets. IEEE Trans Med Imaging 28(8):1251–1265
Hochreiter S (1998) The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int J Uncertain Fuzziness Knowl Based Syst 6(02):107–116
Huang M, Yang W, Wu Y, Jiang J, Chen W, Feng Q (2014) Brain tumor segmentation based on local independent projection-based classification. IEEE Trans Biomed Eng 61(10):2633–2645
Kadoury S, Vorontsov E, Tang A (2015) Metastatic liver tumour segmentation from discriminant grassmannian manifolds. Phys Med Biol 60(16):6459
Kainmueller D, Lamecker H, Heller MO, Weber B, Hege HC, Zachow S (2013) Omnidirectional displacements for deformable surfaces. Med Image Anal 17(4):429–441
Khotanlou H, Colliot O, Atif J, Bloch I (2009) 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Sets Syst 160(10):1457–1473
Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds) Advances in neural information processing systems 25. Curran Associates Inc, Red Hook, pp 1097–1105
Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10), pp 807–814
Plaut DC, Hinton GE (1987) Learning sets of filters using back-propagation. Comput Speech Lang 2(1):35–61
Qi Y, Xiong W, Leow WK, Tian Q, Zhou J, Liu J, Han T, Venkatesh SK, Wang SC (2008) Semi-automatic segmentation of liver tumors from CT scans using Bayesian rule-based 3d region growing. In: MICCAI Workshop, vol 41, pp 201
Rajendran A, Dhanasekaran R (2012) Fuzzy clustering and deformable model for tumor segmentation on MRI brain image: a combined approach. Procedia Eng 30:327–333
Stawiaski J, Decenciere E, Bidault F (2008) Interactive liver tumor segmentation using graph-cuts and watershed. In: Workshop on 3D segmentation in the clinic: a grand challenge II. Liver tumor segmentation challenge. MICCAI, New York, USA
Vorontsov E, Abi-Jaoudeh N, Kadoury S (2014) Metastatic liver tumor segmentation using texture-based omni-directional deformable surface models. In: Yoshida H, Nppi JJ, Saini S (ed) Abdominal imaging. Computational and clinical applications. Number 8676 in Lecture Notes in Computer Science. Springer International Publishing, pp 74–83
Acknowledgments
Research funding was supported in part by the Canada Research Chairs and the NSERC Discovery grant programme and the Fonds de recherche du Québec - Santé (FRQS-ARQ #26993).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Vorontsov, E., Tang, A., Roy, D. et al. Metastatic liver tumour segmentation with a neural network-guided 3D deformable model. Med Biol Eng Comput 55, 127–139 (2017). https://doi.org/10.1007/s11517-016-1495-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11517-016-1495-8