Abstract
Lung cancer remains as one of the most incident types of cancer throughout the world. Temporal evaluation has become a very useful tool when one wishes to analyze some malignancy-indicating behavior. The objective of the present work is to detect changes in the local densities of lung lesions over time (follow-up analysis). From the detected changes, local information as well as extent region of changes can complement the studies regarding the malignant or benign nature of the lesion. Based on this idea, we attempt to use techniques that allow the observation of changes in the lesion over time, based on remote sensing techniques which highlight changes occurring in the environment. The techniques used were the image differencing, image rationing, median filtering, image regression and the fuzzy XOR operator. Based on the global measurement of change percentage in the density, we found density variations which were considered significant in a range from 2.22 to 36.57 % of the volume of the lesion. The results achieved are promising since, besides the visual aspects of the changes in density of the lung lesion over time, we managed to quantify these changes and compare them by volumetric analysis, a more commonly used technique for analysis of changes in lung lesions.











Similar content being viewed by others
Notes
Insight Segmentation and Registration Toolkit - http://www.itk.org.
References
Alonso J, Romero S, Mañanas M, Rojas M, Riba J, Barbanoj M (2015) Evaluation of multiple comparison correction procedures in drug assessment studies using loreta maps. Med Biol Eng Comput. doi:10.1007/s11517-015-1315-6
Atallah S, Cho BJ, Allibhai Z, Taremi M, Giuliani M, Le LW, Brade A, Sun A, Bezjak A, Hope AJ (2014) Impact of pretreatment tumor growth rate on outcome of early-stage lung cancer treated with stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 89(3):532–538. doi:10.1016/j.ijrobp.2014.03.003. http://www.sciencedirect.com/science/article/pii/S0360301614002910
Brink C, Bernchou U, Bertelsen A, Hansen O, Schytte T, Bentzen SM (2014) Locoregional control of non-small cell lung cancer in relation to automated early assessment of tumor regression on cone beam computed tomography. Int J Radiat Oncol Biol Phys 89(4):916–923. doi:10.1016/j.ijrobp.2014.03.038. http://www.sciencedirect.com/science/article/pii/S0360301614003952
Casanova R, Moukoko D, Pithioux M, Pailler-Mattéi C, Zahouani H, Chabrand P (2010) Temporal evolution of skeletal regenerated tissue: what can mechanical investigation add to biological? Med Biol Eng Comput 48(8):811–819. doi:10.1007/s11517-010-0637-7
Chen B, Kitasaka T, Honma H, Takabatake H, Mori M, Natori H, Mori K (2012) Automatic segmentation of solitary pulmonary nodules based on local intensity structure analysis and 3d neighborhood features in 3d chest ct images. doi:10.1117/12.911782
Chen B, Naito H, Nakamura Y, Kitasaka T, Rueckert D, Honma H, Takabatake H, Mori M, Natori H, Mori K (2011) Automatic segmentation and identification of solitary pulmonary nodules on follow-up ct scans based on local intensity structure analysis and non-rigid image registration. doi:10.1117/12.878731
Duindam T, de Hoop B, van Ginneken B (2009) Nodule volume change estimation in thoracic CT using sphere fitting, morphological segmentation and image registration. In: The second international workshop on pulmonary image analysis, pp 389–400
El-Baz A, Yuksel SE, Elshazly S, Farag AA (2005) Non-rigid registration techniques for automatic follow-up of lung nodules. International Congress Series 1281(0):1115–1120. doi:10.1016/j.ics.2005.03.340. http://www.sciencedirect.com/science/article/pii/S0531513105006011. CARS 2005: Computer assisted radiology and surgery proceedings of the 19th international congress and exhibition
Field JK, Oudkerk M, Pedersen JH, Duffy SW (2013) Prospects for population screening and diagnosis of lung cancer. Lancet 382(9893):732–741. doi:10.1016/S0140-6736(13)61614-1.http://www.sciencedirect.com/science/article/pii/S0140673613616141
Hadjiiski LM, Way TW, Sahiner B, Chan HP, Cascade P, Bogot N, Kazerooni EA, Zhou C (2007) Computer-aided diagnosis for interval change analysis of lung nodule features in serial ct examinations. doi:10.1117/12.713770
Henschke CI, Yankelevitz DF, Yip R, Reeves AP, Farooqi A, Xu D, Smith JP, Libby DM, Pasmantier MW, Miettinen OS (2012) Lung cancers diagnosed at annual ct screening: volume doubling times. Radiology 263(2):578–583. doi:10.1148/radiol.12102489
Honda O, Kawai M, Gyobu T, Kawata Y, Johkoh T, Sekiguchi J, Tomiyama N, Yoshida S, Sumikawa H, Inque A, Yanagawa M, Daimon T, Nakamura H (2009) Reproducibility of temporal volume change in ct of lung cancer: comparison of computer software and manual assessment. Br J Radiol 82(981):742–747. doi:10.1259/bjr/67746844
Hormann K, Agathos A (2001) The point in polygon problem for arbitrary polygons. Comput Geometry 20(3):131–144. doi:10.1016/S0925-7721(01)00012-8. http://www.sciencedirect.com/science/article/pii/S0925772101000128
I N of Cancer (INCA) NI (2013) Câncer no brasil: Dados dos registros de base populacional (2013). Accessible in 09/05/2013
Ibáñez L, Schroeder W, Ng L, Cates J (2003) The ITK Software Guide. Kitware
İlsever M, Ünsalan C (2012) Pixel-based change detection methods. In: Two-dimensional change detection methods, SpringerBriefs in Computer Science, pp 7–21. Springer, London. doi:10.1007/978-1-4471-4255-3-2
Kanungo T, Mount DM, Netanyahu NS, Piatko CD, Silverman R, Wu AY, Member S, Member S (2002) An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach Intell 24:881–892
Lindell RM, Hartman TE, Swensen SJ, Jett JR, Midthun DE, Tazelaar HD, Mandrekar JN (2007) Five-year lung cancer screening experience: Ct appearance, growth rate, location, and histologic features of 61 lung cancers. Radiology 242(2):555–562. doi:10.1148/radiol.2422052090. PMID: 17255425
Linning E, Wu S, Wang K, Meng H, Sun D, Wu Z (2013) Computed tomography quantitative analysis of components: a new method monitoring the growth of pulmonary nodule. Acta Radiologica 54(8):904–908. doi:10.1177/0284185113485572. http://acr.sagepub.com/content/54/8/904.abstract
Newman AM, Bratman SV, To J, Wynne JF, Eclov NCW, Modlin LA, Liu CL, Neal JW, Wakelee HA, Merritt RE, Shrager JB, Loo BW, Alizadeh AA, Diehn M (2014) An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 20(5):548–554. doi:10.1038/nm.3519
Reeves A, Chan A, Yankelevitz D, Henschke C, Kressler B, Kostis W (2006) On measuring the change in size of pulmonary nodules. IEEE Trans Med Imag 25(4):435–450. doi:10.1109/TMI.2006.871548
Reeves A, Biancardi A, Yankelevitz D, Fotin S, Keller B, Jirapatnakul A, Lee J (2009) A public image database to support research in computer aided diagnosis. In: Engineering in medicine and biology society, 2009. EMBC 2009. Annual international conference of the IEEE, pp 3715–3718. doi:10.1109/IEMBS.2009.5334807
Seer cancer statistics factsheets (2011) Lung and bronchus cancer. Tech rep, National Cancer Institute, Bethesda, MD. http://seer.cancer.gov/statfacts/html/lungb.html
Shen L, Huang H, Ford J, Lu CH, Gao L, Zheng W, Makedon F, Pearlman J (2006) Spatio-temporal analysis tool for modeling pulmonary nodules in mr images. doi:10.1117/12.654469
Sofka M, Stewart CV (2010) Location registration and recognition (lrr) for serial analysis of nodules in lung CT scans. Med Image Anal 14(3):407–428. doi:10.1016/j.media.2010.02.006. http://www.sciencedirect.com/science/article/pii/S1361841510000216
Sone S, Tsushima K, Yoshida K, Hamanaka K, Hanaoka T, Kondo R (2010) Pulmonary nodules: Preliminary experience with semiautomated volumetric evaluation by CT stratum. Acad Radiol 17(7):900–911. doi:10.1016/j.acra.2010.03.003. http://www.sciencedirect.com/science/article/pii/S107663321000156X
Tao C, Gierada DS, Zhu F, Pilgram TK, Wang JH, Bae KT (2009) Automated Matching of Pulmonary Nodules: Evaluation in Serial Screening Chest CT. Am J Roentgenol 192:624–628. http://www.ajronline.org/cgi/reprint/192/3/624
Zheng Y, Steiner K, Bauer T, Yu J, Shen D, Kambhamettu C (2007) Lung nodule growth analysis from 3d ct data with a coupled segmentation and registration framework. In: Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on, pp 1–8. doi:10.1109/ICCV.2007.4409150
Acknowledgments
The authors acknowledge CAPES, CNPq and FAPEMA for financial support. We thank the PLD database for making public the lung lesions used in this work and the Hospital Pedro Ernesto - RJ for the lung nodules database.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Netto, S.M.B., Silva, A.C., Nunes, R.A. et al. Voxel-based comparative analysis of lung lesions in CT for therapeutic purposes. Med Biol Eng Comput 55, 295–314 (2017). https://doi.org/10.1007/s11517-016-1510-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11517-016-1510-0