Skip to main content

Advertisement

Log in

Evaluation of an automatic dry eye test using MCDM methods and rank correlation

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Dry eye is an increasingly common disease in modern society which affects a wide range of population and has a negative impact on their daily activities, such as working with computers or driving. It can be diagnosed through an automatic clinical test for tear film lipid layer classification based on color and texture analysis. Up to now, researchers have mainly focused on the improvement of the image analysis step. However, there is still large room for improvement on the machine learning side. This paper presents a methodology to optimize this problem by means of class binarization, feature selection, and classification. The methodology can be used as a baseline in other classification problems to provide several solutions and evaluate their performance using a set of representative metrics and decision-making methods. When several decision-making methods are used, they may offer disagreeing rankings that will be solved by conflict handling in which rankings are merged into a single one. The experimental results prove the effectiveness of the proposed methodology in this domain. Also, its general purpose allows to adapt it to other classification problems in different fields such as medicine and biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wolff E (1954) Anatomy of the eye and orbit, 4th edn. H. K. Lewis and Co., London

    Google Scholar 

  2. Nichols KK, Nichols JJ, Mitchell GL (2004) The lack of association between signs and symptoms in patients with dry eye disease. Cornea 23(8):762–770

    Article  PubMed  Google Scholar 

  3. Rolando M, Refojo MF, Kenyon KR (1983) Increased tear evaporation in eyes with keratoconjunctivitis sicca. Arch Ophthalmol 101:557–558

    Article  CAS  PubMed  Google Scholar 

  4. Lemp MA (1998) Epidemiology and classification of dry eye. Adv Exp Med Biol 438:791–803

    Article  CAS  PubMed  Google Scholar 

  5. Guillon J (1998) Non-invasive tearscope plus routine for contact lens fitting . Contact Lens Anterior Eye 21(1):S31–S40

    Article  PubMed  Google Scholar 

  6. King-Smith P, Finkd B, Fogt N (1999) Three interferometric methods for measuring the thickness of layers of the tear film. Optom Vis Sci 76:19–32

    Article  CAS  PubMed  Google Scholar 

  7. Goto E, Yagi Y, Kaido M, Matsumoto Y, Konomi K, Tsubota K (2003) Improved functional visual acuity after punctal occlusion in dry eye patients. Am J Ophthalmol 135(5):704–705

    Article  PubMed  Google Scholar 

  8. Ramos L, Penas M, Remeseiro B, Mosquera A, Barreira N, Yebra-Pimentel E (2011) Texture and color analysis for the automatic classification of the eye lipid layer. In: LNCS: advances in computational interlligence (international work conference on artificial neural networks, IWANN’11), vol 6692. pp 66–73

  9. Remeseiro B, Penas M, Barreira N, Mosquera A, Novo J, García-Resúa C (2013) Automatic classification of the interferential tear film lipid layer using colour texture analysis. Comput Methods Programs Biomed 111:93–103

    Article  CAS  PubMed  Google Scholar 

  10. Remeseiro B, Penas M, Mosquera A, Novo J, Penedo MG, Yebra-Pimentel E (2012) Statistical comparison of classifiers applied to the interferential tear film lipid layer automatic classification. Comput Math Methods Med 1–10:2012

    Google Scholar 

  11. Remeseiro B, Boló-Canedo V, Peteiro-Barral D, Alonso-Betanzos A, Guijarro-Berdinas B, Mosquera A, Penedo MG, Sánchez-Marono N (2014) A methodology for improving tear film lipid layer classification. IEEE J Biomed Health Inform 18(4):1485–1493

    Article  PubMed  Google Scholar 

  12. Rebeca Méndez, Remeseiro B, Peteiro-Barral D, Penedo MG (2014) Evaluation of class binarization and feature selection in tear film classification using topsis. CCIS: agents and artificial intelligence. Rev Sel Pap ICAART 2013 449:179–193

    Google Scholar 

  13. Rokach L (2010) Ensemble-based classifiers. Artif Intell Rev 33(1–2):1–39

    Article  Google Scholar 

  14. Wei G-W (2010) Extension of TOPSIS method for 2-tuple linguistic multiple attribute group decision making with incomplete weight information. Knowl Inf Syst 25(3):623–634

    Article  Google Scholar 

  15. Laplante A (2009) Using the analytical hierarchy process in selecting commercial real-time operating systems. Int J Inf Technol Decis Mak 8(01):151–168

    Article  Google Scholar 

  16. Peng Yi, Wang G, Wang H (2012) User preferences-based software defect detection algorithms selection using MCDM. Inf Sci 191:3–13

    Article  Google Scholar 

  17. Wu D, Boyer KL, Nichols JJ, King-Smith PE (2010) Texture-based prelens tear film segmentation in interferometry images. Mach Vis Appl 21(3):253–259

    Article  Google Scholar 

  18. Ramos L, Barreira N, Mosquera A, Penedo MG, Yebra-Pimentel E, García-Resúa C (2014) Analysis of parameters for the automatic computation of the tear film break-up time test based on CCLRU standards. Comput Methods Programs Biomed 113(3):715–724

    Article  CAS  PubMed  Google Scholar 

  19. Carpente A, Ramos L, Barreira N, Penedo MG, Pena-Verdeal H and Giráldez MJ (2014) On the automation of the tear film non-invasive break-up test. In: 2nd International symposium on computer-based medical systems (CBMS), pp 185–188

  20. Guillon J, Guillon M (1997) Tearscope Plus Clinical Handbook and Tearscope Plus Instructions Keeler Ltd, Windsor, Berkshire, Keeler Inc, Broomall, PA

  21. Calvo D, Mosquera A, Penas M, García-Resúa C, Remeseiro B (2010) Color texture analysis for tear film classification: a preliminary study. LNCS Int Conf Image Anal Recognit (ICIAR) 6112:388–397

    Article  Google Scholar 

  22. McLaren K (1976) The development of the CIE 1976 (L*a*b) uniform colour-space and colour-difference formula. J Soc Dyers Colour 92(9):338–341

    Article  Google Scholar 

  23. Bradski G (2000) The OpenCV Library. Dr. Dobb’s J 25(11):120–126

  24. Haralick Robert M, Shanmugam K, Its’Hak Dinstein (1973) Texture features for image classification. IEEE Trans Syst Man Cybernet Syst Man Cybernet 3:610–621

    Article  Google Scholar 

  25. VOPTICAL_I1, VARPA optical dataset acquired and annotated by optometrists from the Optometry Service of the University of Santiago de Compostela (Spain), 2012. http://www.varpa.es/voptical_I1.html. Accessed Apr 2016

  26. Furnkranz J (2003) Round robin ensembles. Intell Data Anal 7(5):385–403

    Google Scholar 

  27. Dietterich TG and Bakiri G (1995) Solving multiclass learning problems via error-correcting output codes. Arxiv preprint arXiv:9501101

  28. Dietterich TG, Bakiri G (1995) Solving multiclass learning problems via error-correcting output codes. J Artif Intell Res 2:263–286

    Google Scholar 

  29. Allwein EL, Schapire RE, Singer Y (2001) Reducing multiclass to binary: a unifying approach for margin classifiers. J Mach Learn Res 1:113–141

    Google Scholar 

  30. Guyon I, Gunn S, Nikravesh M, Zadeh L (2006) Feature extraction: foundations and applications. Springer, New York

    Book  Google Scholar 

  31. Manning Christopher D, Prabhakar R, Hinrich S (2008) Introduction to information retrieval, vol 1. Cambridge University Press, Cambridge

    Book  Google Scholar 

  32. Loughrey J, Cunningham P (2005) Overfitting in wrapper-based feature subset selection: the harder you try the worse it gets. Res Dev Intell Syst XXI:33–43

    Article  Google Scholar 

  33. Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A (2011) On the behavior of feature selection methods dealing with noise and relevance over synthetic scenarios. In: The 2011 international joint conference on neural networks (IJCNN), pp 1530–1537

  34. Hall MA (1999) Correlation-based feature selection for machine learning. PhD thesis, The University of Waikato

  35. Dash M, Liu H (2003) Consistency-based search in feature selection. Artif Intell 151(1–2):155–176

    Article  Google Scholar 

  36. Zhao Z, Liu H (2007) Searching for interacting features. In: Proceedings of the 20th international joint conference on Artifical intelligence. pp 1156–1161

  37. Mitchell T (1997) Machine learning. McGraw-Hill

  38. Kotsiantis SB (2007) Supervised machine learning: a review of classification techniques. Informatica 31:249–268

    Google Scholar 

  39. Friedman JH (1989) Regularized discriminant analysis. J Am Stat Asso 84(405):165–175

  40. Jensen F (1996) An introduction to bayesian networks. Springer, New York

    Google Scholar 

  41. Murthy SK (1998) Automatic construction of decision trees from data a multi-disciplinary survey. Data Min Knowl Discov 2:345–389

    Article  Google Scholar 

  42. Burges C (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2(2):1–47

    Article  Google Scholar 

  43. Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65:386–408

    Article  CAS  PubMed  Google Scholar 

  44. Fernandez Caballero JC, Martínez FJ, Hervás C, Gutiérrez PA (2010) Sensitivity versus accuracy in multiclass problems using memetic pareto evolutionary neural networks. IEEE Trans Neural Netw 21(5):750–770

    Article  PubMed  Google Scholar 

  45. Hwang CL, Yoon K (1981) Multiple attribute decision making: methods and applications, vol 13. Springer, New York

    Book  Google Scholar 

  46. Opricovic S, Tzeng GH (2004) Compromise solution by mcdm methods: a comparative analysis of vikor and topsis. Eur J Oper Res 156(2):445–455

    Article  Google Scholar 

  47. Kuo Y, Yang T, Huang GW (2008) The use of grey relational analysis in solving multiple attribute decision-making problems. Comput Ind Eng 55(1):80–93

    Article  Google Scholar 

  48. Opricovic S (1998) Multicriteria optimization of civil engineering systems. Fac Civil Eng Belgrade 2(1):5–21

    Google Scholar 

  49. Peng Yi, Kou Gang, Wang Guoxun, Shi Yong (2011) FAMCDM: a fusion approach of MCDM methods to rank multiclass classification algorithms. Omega 39(6):677–689

    Article  Google Scholar 

  50. Gautheir TD (2001) Detecting trends using spearman’s rank correlation coefficient. Environ Forensics 2(4):359–362

    Article  Google Scholar 

Download references

Acknowledgments

This research has been partially funded by the Secretaría de Estado de Investigación of the Spanish Government and FEDER funds of the European Union through the research projects TIN2012-37954 and PI14/02161; and by the Consellería de Industria of the Xunta de Galicia through the research projects GPC2013/065 and GRC2014/035. We would also like to thank the Optometry Service of the University of Santiago de Compostela (Spain) for providing us with the annotated dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Remeseiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peteiro-Barral, D., Remeseiro, B., Méndez, R. et al. Evaluation of an automatic dry eye test using MCDM methods and rank correlation. Med Biol Eng Comput 55, 527–536 (2017). https://doi.org/10.1007/s11517-016-1534-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1534-5

Keywords

Navigation