Abstract
Cataract leads to visual impairment. Among different types of cataract, posterior subcapsular cataract (PSC) can develop rapidly and surgery is usually needed. An approach to detect PSC opacities in retro-illumination images is proposed. Watershed and Markov random fields (MRF) method are employed to opacities in anterior retro-illumination images. It results in a mixture of PSC, cortical opacities and noise. Then, information in both anterior and posterior retro-illumination images is utilized. Two features are extracted to identify PSC: mean gradient comparison (MGC) between anterior and posterior retro-illumination images, and spatial location. This is the first time that comparison between anterior and posterior retro-illumination images is proposed and MGC is proposed as the feature of comparison in PSC detection. Experiments show that the sensitivity and specificity of PSC screening is 91.2 and 90.1 %, respectively, based on the 519 pairs of testing images. To the best of our knowledge, it is the best performance reported in automatic detection of PSC. Compared with the methods in the literatures, considerable improvement is achieved when there are large areas of PSC opacities.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11517-016-1554-1/MediaObjects/11517_2016_1554_Fig1_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11517-016-1554-1/MediaObjects/11517_2016_1554_Fig2_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11517-016-1554-1/MediaObjects/11517_2016_1554_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11517-016-1554-1/MediaObjects/11517_2016_1554_Fig4_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11517-016-1554-1/MediaObjects/11517_2016_1554_Fig5_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11517-016-1554-1/MediaObjects/11517_2016_1554_Fig6_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11517-016-1554-1/MediaObjects/11517_2016_1554_Fig7_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11517-016-1554-1/MediaObjects/11517_2016_1554_Fig8_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11517-016-1554-1/MediaObjects/11517_2016_1554_Fig9_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11517-016-1554-1/MediaObjects/11517_2016_1554_Fig10_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11517-016-1554-1/MediaObjects/11517_2016_1554_Fig11_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11517-016-1554-1/MediaObjects/11517_2016_1554_Fig12_HTML.jpg)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Belean B, Terebes R, Bot A (2014) Low-complexity PDE-based approach for automatic microarray image processing. Med Biol Eng Comput 53:99–110. doi:10.1007/s11517-014-1214-2
Besag J (1974) Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc Ser B (Methodol) 36:192–236. doi:10.2307/2984812
Chylack LT (1993) The lens opacities classification system III. Arch Ophthalmol 111:831. doi:10.1001/archopht.1993.01090060119035
Deng H, Clausi D (2004) Unsupervised image segmentation using a simple MRF model with a new implementation scheme. Pattern Recogn 37:2323–2335. doi:10.1016/s0031-3203(04)00195-5
Duan XR, Liang YB, Wang NL, Wong TY, Sun LP, Yang XH, Tao QS, Yuan RZ, Friedman DS (2012) Prevalence and associations of cataract in a rural Chinese adult population: the Handan eye study. Graefe’s Arch Clin Exp Ophthalmol 251:203–212. doi:10.1007/s00417-012-2012-x
Foong AWP, Saw S-M, Loo J-L, Shen S, Loon S-C, Rosman M, Aung T, Tan DTH, Tai ES, Wong TY (2007) Rationale and methodology for a population-based study of eye diseases in Malay people: the Singapore Malay eye study (SiMES). Ophthalmic Epidemiol 14:25–35. doi:10.1080/09286580600878844
Gershenzon A, Robman LD (1999) New software for lens retro-illumination digital image analysis. Aust N Z J Ophthalmol 27:170–172. doi:10.1046/j.1440-1606.1999.00201.x
Harocopos GJ, Alvares KM, Kolker AE, Beebe DC (1998) Human age-related cataract and lens epithelial cell death. Investig Ophthalmol Vis Sci 39:2696–2706
Katartzis A, Sahli H, Cornelis J, Fotopoulos S, Panayiotakis G (2002) Model-based technique for the measurement of skin thickness in mammography. Med Biol Eng Comput 40:153–162. doi:10.1007/bf02348119
Klein BEK, Klein R, Linton KLP, Magli YL, Neider MW (1990) Assessment of cataracts from photographs in the beaver dam eye study. Ophthalmology 97:1428–1433. doi:10.1016/s0161-6420(90)32391-6
Li H, Gao X, Tan MH, Chow YC, Lim JH, Sun Y, Cheung CC, Wong TY (2011) Lens image registration for cataract detection. In: 6th IEEE conference on industrial electronics and applications. doi:10.1109/iciea.2011.5975564
Li H, Ko L, Lim JH, Liu J, Wong DWK, Wong TY (2008) Image based diagnosis of cortical cataract. In: 30th annual international conference of the IEEE engineering in medicine and biology society. doi:10.1109/iembs.2008.4650063
Li H, Lim JH, Liu J, Wong DWK, Foo Y, Sun Y, Wong TY (2010) Automatic detection of posterior subcapsular cataract opacity for cataract screening. In: Annual international conference of the IEEE engineering in medicine and biology. doi:10.1109/iembs.2010.5626467
Li SZ (2009) Markov random field modeling in image analysis. Springer, New York
Logeswaran R (2006) Neural networks aided stone detection in thick slab MRCP images. Med Biol Eng Comput 44:711–719. doi:10.1007/s11517-006-0083-8
McCarty CA, Keeffe JE, Taylor HR (1999) The need for cataract surgery: projections based on lens opacity, visual acuity, and personal concern. Br J Ophthalmol 83:62–65. doi:10.1136/bjo.83.1.62
Nidek Co L (1991) Anterior eye segment analysis system: EAS-1000. Operator’s Manual
Pham DL, Xu C, Prince JL (2000) Current methods in medical image segmentation 1. Annu Rev Biomed Eng 2:315–337. doi:10.1146/annurev.bioeng.2.1.315
Rue H, Held L (2005) Gaussian Markov random fields: theory and applications. Chapman and Hall/CRC, Boca Raton
Sparrow JM, Bron AJ, Brown NAP, Ayliffe W, Hill AR (1986) The Oxford clinical cataract classification and grading system. Int Ophthalmol 9:207–225. doi:10.1007/bf00137534
Stifter E, Sacu S, Weghaupt H (2004) Functional vision with cataracts of different morphologies: comparative study. J Cataract Refract Surg 30:1883–1891. doi:10.1016/j.jcrs.2004.01.038
The Eye Diseases Prevalence Research Group (2004) Prevalence of cataract and Pseudophakia/Aphakia among adults in the United states. Arch Ophthalmol 122:487. doi:10.1001/archopht.122.4.487
Tsaig Y, Averbuch A (2002) Automatic segmentation of moving objects in video sequences: a region labeling approach. IEEE Trans Circuits Syst Video Technol 12:597–612. doi:10.1109/tcsvt.2002.800513
Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell 13:583–598. doi:10.1109/34.87344
Vivino MA, Mahurkar A, Trus B, Lopez ML, Datiles M (1995) Quantitative analysis of retroillumination images. Eye 9:77–84. doi:10.1038/eye.1995.12
Xie M, Gao J, Zhu C, Zhou Y (2014) A modified method for MRF segmentation and bias correction of MR image with intensity inhomogeneity. Med Biol Eng Comput 53:23–35. doi:10.1007/s11517-014-1198-y
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, W., Li, H. Lens opacity detection for serious posterior subcapsular cataract. Med Biol Eng Comput 55, 769–779 (2017). https://doi.org/10.1007/s11517-016-1554-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11517-016-1554-1