Skip to main content
Log in

Stress analysis of fracture of atherosclerotic plaques: crack propagation modeling

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Traditionally, the degree of luminal obstruction has been used to assess the vulnerability of atherosclerotic plaques. However, recent studies have revealed that other factors such as plaque morphology, material properties of lesion components and blood pressure may contribute to the fracture of atherosclerotic plaques. The aim of this study was to investigate the mechanism of fracture of atherosclerotic plaques based on the mechanical stress distribution and fatigue analysis by means of numerical simulation. Realistic models of type V plaques were reconstructed based on histological images. Finite element method was used to determine mechanical stress distribution within the plaque. Assuming that crack propagation initiated at the sites of stress concentration, crack propagation due to pulsatile blood pressure was modeled. Results showed that crack propagation considerably changed the stress field within the plaque and in some cases led to initiation of secondary cracks. The lipid pool stiffness affected the location of crack formation and the rate and direction of crack propagation. Moreover, increasing the mean or pulse pressure decreased the number of cycles to rupture. It is suggested that crack propagation analysis can lead to a better recognition of factors involved in plaque rupture and more accurate determination of vulnerable plaques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akyildiz AC, Speelman L, Gijsen FJ (2014) Mechanical properties of human atherosclerotic intima tissue. J Biomech 47:773–783

    Article  PubMed  Google Scholar 

  2. Bank A, Versluis A, Dodge S, Douglas W (2000) Atherosclerotic plaque rupture: a fatigue process? Med Hypotheses 55:480–484

    Article  CAS  PubMed  Google Scholar 

  3. Bluestein D, Alemu Y, Avrahami I, Gharib M, Dumont K, Ricotta JJ, Einav S (2008) Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling. J Biomech 41:1111–1118

    Article  PubMed  Google Scholar 

  4. Born GVR, Richardson PD (1990) Mechanical properties of human atherosclerotic lesions. In: Glacove S, Newman WP, Schaffer SA (eds) Pathobiology of the human atherosclerotic plaque. Springer, New York, pp 413–423

    Chapter  Google Scholar 

  5. Broek D (1986) Elementary engineering fracture mechanics. Springer, New York

    Book  Google Scholar 

  6. Brown BG, Zhao X-Q, Sacco DE, Albers JJ (1993) Lipid lowering and plaque regression. New insights into prevention of plaque disruption and clinical events in coronary disease. Circulation 87:1781–1791

    Article  CAS  PubMed  Google Scholar 

  7. Brown AJ, Teng Z, Evans PC, Gillard JH, Samady H, Bennett MR (2016) Role of biomechanical forces in the natural history of coronary atherosclerosis. Nat Rev Cardiol 13(4):210–220. doi:10.1038/nrcardio.2015.203

    Article  PubMed  Google Scholar 

  8. Burke AP, Tavora F (2010) Practical cardiovascular pathology. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  9. Chau AH, Chan RC, Shishkov M, MacNeill B, Iftimia N, Tearney GJ, Kamm RD, Bouma BE, Kaazempur-Mofrad MR (2004) Mechanical analysis of atherosclerotic plaques based on optical coherence tomography. Ann Biomed Eng 32:1494–1503

    Article  PubMed  Google Scholar 

  10. Cheng GC, Loree HM, Kamm RD, Fishbein MC, Lee RT (1993) Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation. Circulation 87:1179–1187

    Article  CAS  PubMed  Google Scholar 

  11. Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation 92:657–671

    Article  CAS  PubMed  Google Scholar 

  12. Finet G, Ohayon J, Rioufol G (2004) Biomechanical interaction between cap thickness, lipid core composition and blood pressure in vulnerable coronary plaque: impact on stability or instability. Coron Artery Dis 15:13–20

    Article  PubMed  Google Scholar 

  13. Gao H, Long Q (2008) Effects of varied lipid core volume and fibrous cap thickness on stress distribution in carotid arterial plaques. J Biomech 41:3053–3059

    Article  PubMed  Google Scholar 

  14. Gilpin CM (2005) Cyclic loading of porcine coronary arteries. Master thesis, Georgia Institute of Technology, GA

  15. Hallow KM, Taylor WR, Rachev A, Vito RP (2009) Markers of inflammation collocate with increased wall stress in human coronary arterial plaque. Biomech Model Mechanobiol 8:473–486

    Article  PubMed  Google Scholar 

  16. Holzapfel GA, Sommer G, Regitnig P (2004) Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J Biomech Eng 126:657–665

    Article  PubMed  Google Scholar 

  17. Huang Y, Teng Z, Sadat U, He J, Graves MJ, Gillard JH (2013) In vivo MRI-based simulation of fatigue process: a possible trigger for human carotid atherosclerotic plaque rupture. Biomed Eng Online 12:36

    Article  PubMed  PubMed Central  Google Scholar 

  18. Huang Y, Teng Z, Sadat U, Graves MJ, Bennett MR, Gillard JH (2014) The influence of computational strategy on prediction of mechanical stress in carotid atherosclerotic plaques: comparison of 2D structure-only, 3D structure-only, one-way and fully coupled fluid-structure interaction analyses. J Biomech 47:1465–1471

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kaazempur-Mofrad M, Wada S, Myers J, Ethier C (2005) Mass transport and fluid flow in stenotic arteries: axisymmetric and asymmetric models. Int J Heat Mass Transf 48:4510–4517

    Article  CAS  Google Scholar 

  20. Kannel WB (1996) Blood pressure as a cardiovascular risk factor: prevention and treatment. JAMA 275:1571–1576

    Article  CAS  Google Scholar 

  21. Kock SA, Nygaard JV, Eldrup N, Fründ E-T, Klærke A, Paaske WP, Falk E, Kim WY (2008) Mechanical stresses in carotid plaques using MRI-based fluid–structure interaction models. J Biomech 41:1651–1658

    Article  PubMed  Google Scholar 

  22. Ku DN, Giddens DP, Zarins CK, Glagov S (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arterioscler Thromb Vasc Biol 5:293–302

    Article  CAS  Google Scholar 

  23. Leach JR, Rayz VL, Soares B, Wintermark M, Mofrad MR, Saloner D (2010) Carotid atheroma rupture observed in vivo and FSI-predicted stress distribution based on pre-rupture imaging. Ann Biomed Eng 38:2748–2765

    Article  PubMed  PubMed Central  Google Scholar 

  24. Loree HM, Kamm R, Stringfellow R, Lee R (1992) Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res 71:850–858

    Article  CAS  PubMed  Google Scholar 

  25. Madhavan S, Ooi WL, Cohen H, Alderman MH (1994) Relation of pulse pressure and blood pressure reduction to the incidence of myocardial infarction. Hypertension 23:395–401

    Article  CAS  PubMed  Google Scholar 

  26. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G (2003) From vulnerable plaque to vulnerable patient a call for new definitions and risk assessment strategies: part I. Circulation 108:1664–1672

    Article  PubMed  Google Scholar 

  27. Ohayon J, Dubreuil O, Tracqui P, Le floc’h S, Rioufol G, Chalabreysse L, Thivolet F, Pettigrew RI, Finet G (2007) Influence of residual stress/strain on the biomechanical stability of vulnerable coronary plaques: potential impact for evaluating the risk of plaque rupture. Am J Physiol Heart Circ Physiol 293:H1987–H1996

    Article  CAS  PubMed  Google Scholar 

  28. Pagiatakis C, Galaz R, Tardif J-C, Mongrain R (2015) A comparison between the principal stress direction and collagen fiber orientation in coronary atherosclerotic plaque fibrous caps. Med Biol Eng Comput 53:545–555

    Article  PubMed  Google Scholar 

  29. Papaioannou TG, Karatzis EN, Vavuranakis M, Lekakis JP, Stefanadis C (2006) Assessment of vascular wall shear stress and implications for atherosclerotic disease. Int J Cardiol 113:12–18

    Article  PubMed  Google Scholar 

  30. Pei X, Wu B, Li Z-Y (2013) Fatigue crack propagation analysis of plaque rupture. J Biomech Eng 135:101003

    Article  PubMed  Google Scholar 

  31. Qiu Y, Tarbell JM (2000) Interaction between wall shear stress and circumferential strain affects endothelial cell biochemical production. J Vasc Res 37:147–157

    Article  CAS  PubMed  Google Scholar 

  32. Richardson PD (2002) Biomechanics of plaque rupture: progress, problems, and new frontiers. Ann Biomed Eng 30:524–536

    Article  PubMed  Google Scholar 

  33. Richardson PD, Davies M, Born G (1989) Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 334:941–944

    Article  Google Scholar 

  34. Rioufol G, Finet G, Ginon I, Andre-Fouet X, Rossi R, Vialle E, Desjoyaux E, Convert G, Huret J, Tabib A (2002) Multiple atherosclerotic plaque rupture in acute coronary syndrome a three-vessel intravascular ultrasound study. Circulation 106:804–808

    Article  CAS  PubMed  Google Scholar 

  35. Sadat U, Teng Z, Young VE, Walsh SR, Li ZY, Graves MJ, Varty K, Gillard JH (2010) Association between biomechanical structural stresses of atherosclerotic carotid plaques and subsequent ischaemic cerebrovascular events—a longitudinal in vivo magnetic resonance imaging-based finite element study. Eur J Vasc Endovasc Surg 40:485–491. doi:10.1016/j.ejvs.2010.07.015

    Article  CAS  PubMed  Google Scholar 

  36. Sangid MD (2013) The physics of fatigue crack initiation. Int J Fatigue 57:58–72

    Article  CAS  Google Scholar 

  37. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W, Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 92:1355–1374

    Article  CAS  PubMed  Google Scholar 

  38. Tang D, Yang C, Zheng J, Woodard PK, Sicard GA, Saffitz JE, Yuan C (2004) 3D MRI-based multicomponent FSI models for atherosclerotic plaques. Ann Biomed Eng 32:947–960

    Article  PubMed  Google Scholar 

  39. Tang D, Yang C, Mondal S, Liu F, Canton G, Hatsukami TS, Yuan C (2008) A negative correlation between human carotid atherosclerotic plaque progression and plaque wall stress: in vivo MRI-based 2D/3D FSI models. J Biomech 41:727–736

    Article  PubMed  PubMed Central  Google Scholar 

  40. Topoleski LT, Salunke N, Humphrey J, Mergner W (1997) Composition-and history-dependent radial compressive behavior of human atherosclerotic plaque. J Biomed Mater Res 35:117–127

    Article  CAS  PubMed  Google Scholar 

  41. Vengrenyuk Y, Carlier S, Xanthos S, Cardoso L, Ganatos P, Virmani R, Einav S, Gilchrist L, Weinbaum S (2006) A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci 103:14678–14683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Veress AI, Weiss JA, Gullberg GT, Vince DG, Rabbitt RD (2002) Strain measurement in coronary arteries using intravascular ultrasound and deformable images. J Biomech Eng 124:734–741

    Article  PubMed  Google Scholar 

  43. Versluis A, Bank AJ, Douglas WH (2006) Fatigue and plaque rupture in myocardial infarction. J Biomech 39:339–347

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Tafazzoli-Shadpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezvani-Sharif, A., Tafazzoli-Shadpour, M., Kazemi-Saleh, D. et al. Stress analysis of fracture of atherosclerotic plaques: crack propagation modeling. Med Biol Eng Comput 55, 1389–1400 (2017). https://doi.org/10.1007/s11517-016-1600-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1600-z

Keywords

Navigation