Skip to main content
Log in

Region–media coupling in characterization and modelling of the disc annulus single lamella swelling

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The annulus fibrosus (AF) swelling property, which is correlated with its rheological and viscoelastic properties, plays a significant role in disc nutrition and mechanical loading justification during daily activities as well as designing scaffolds for tissue engineering applications. The objective of this study was twofold: firstly to characterize the AF single lamella swelling kinetics in different regions and solutions at the temperature range of 35–40 °C and secondly to use the swelling results as a baseline to model (independent to swelling media and anatomic region) the AF single lamella swelling. It was found that the AF single lamella swelling kinetics (equilibrium swelling ratio and swelling rate) depends on anatomic region and swelling media; however, its trend for different swelling media (ionic and molecular solution) is similar and the majority of hydration occurs during first 20% of equilibrium swelling time (about 20 min). Change in swelling rate constant in circumferential direction depends on the solution type. It decreases from anterior to lateral regions for water, PBS and glucose solution and remains constant—or its change is negligible—from lateral to posterolateral regions. The effect of temperature (in the range of 35–40 °C) on swelling kinetics was seen to be negligible. It was also understood that it is possible to present a model (independent to swelling media type) to predict the swelling kinetics of posterior and posterolateral AF single lamella, as these locations are less sensitive to the swelling media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Travascio F, Jackson AR, Brown MD, Gu WY (2009) Relationship between solute transport properties and tissue morphology in human annulus fibrosus. J Orthop Res 27:1625–1630. doi:10.1002/Jor.20927

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gu WY, Mao XG, Foster RJ, Weidenbaum M, Mow VC, Rawlins BA (1999) The anisotropic hydraulic permeability of human lumbar anulus fibrosus—influence of age, degeneration, direction, and water content. Spine 24:2449–2455. doi:10.1097/00007632-199912010-00005

    Article  CAS  PubMed  Google Scholar 

  3. Johannessen W, Elliott DM (2005) Effects of degeneration on the biphasic material properties of human nucleus pulposus in confined compression. Spine 30:E724–E729. doi:10.1097/01.brs.0000192236.92867.15

    Article  PubMed  Google Scholar 

  4. Yao H, Justiz M-A, Flagler D, Gu WY (2002) Effects of swelling pressure and hydraulic permeability on dynamic compressive behavior of lumbar annulus fibrosus. Ann Biomed Eng 30:1234–1241

    Article  PubMed  Google Scholar 

  5. Morin C, Hellmich C, Henits P (2013) Fibrillar structure and elasticity of hydrating collagen: a quantitative multiscale approach. J Theor Biol 317:384–393. doi:10.1016/j.jtbi.2012.09.026

    Article  CAS  PubMed  Google Scholar 

  6. Ohshima H, Tsuji H, Hirano N, Ishihara H, Katoh Y, Yamada H (1989) Water diffusion pathway, swelling pressure, and biomechanical properties of the intervertebral disc during compression load. Spine 14:1234–1244

    Article  CAS  PubMed  Google Scholar 

  7. McMillan DW, Garbutt G, Adams MA (1996) Effect of sustained loading on the water content of intervertebral discs: implications for disc metabolism. Ann Rheum Dis 55:880–887. doi:10.1136/ard.55.12.880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Soukane DM, Shirazi-Adl A, Urban JPG (2007) Computation of coupled diffusion of oxygen, glucose and lactic acid in an intervertebral disc. J Biomech 40:2645–2654. doi:10.1016/j.jbiomech.2007.01.003

    Article  PubMed  Google Scholar 

  9. Iatridis JC, MacLean JJ, O’Brien M, Stokes IAF (2007) Measurements of proteoglycan and water content distribution in human lumbar intervertebral discs. Spine 32:1493–1497. doi:10.1097/Brs.0b013e318067dd3f

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cassinelli EH, Hall RA, Kang JD (2001) Biochemistry of intervertebral disc degeneration and the potential for gene therapy applications. Spine J 1:205–214. doi:10.1016/S1529-9430(01)00021-3

    Article  CAS  PubMed  Google Scholar 

  11. Perie D, Korda D, Iatridis JC (2005) Confined compression experiments on bovine nucleus pulposus and annulus fibrosus: sensitivity of the experiment in the determination of compressive modulus and hydraulic permeability. J Biomech 38:2164–2171. doi:10.1016/j.jbiomech.2004.10.002

    Article  PubMed  Google Scholar 

  12. Cortes DH, Jacobs NT, DeLucca JF, Elliott DM (2014) Elastic, permeability and swelling properties of human intervertebral disc tissues: a benchmark for tissue engineering. J Biomech 47:2088–2094

    Article  PubMed  Google Scholar 

  13. Schroeder Y, Sivan S, Wilson W, Merkher Y, Huyghe JM, Maroudas A, Baaijens FPT (2007) Are disc pressure, stress, and osmolarity affected by intra- and extrafibrillar fluid exchange? J Orthop Res 25:1317–1324. doi:10.1002/jor.20443

    Article  PubMed  Google Scholar 

  14. Murakami H, Yoon TS, Attallah-Wasif ES, Kraiwattanapong C, Kikkawa I, Hutton WC (2010) Quantitative differences in intervertebral disc–matrix composition with age-related degeneration. Med Biol Eng Comput 48:469–474. doi:10.1007/s11517-010-0586-1

    Article  PubMed  Google Scholar 

  15. Gu WY, Zhu QQ, Gao X, Brown MD (2014) Simulation of the progression of intervertebral disc degeneration due to decreased nutritional supply. Spine 39:E1411–E1417. doi:10.1097/Brs.0000000000000560

    Article  PubMed  PubMed Central  Google Scholar 

  16. Urban J, Maroudas A (1981) Swelling of the intervertebral disc in vitro. Connect Tissue Res 9:1–10

    Article  CAS  PubMed  Google Scholar 

  17. Best BA, Guilak F, Setton LA, Zhu WB, Saednejad F, Ratcliffe A, Weidenbaum M, Mow VC (1994) Compressive mechanical-properties of the human anulus fibrosus and their relationship to biochemical-composition. Spine 19:212–221. doi:10.1097/00007632-199401001-00017

    Article  CAS  PubMed  Google Scholar 

  18. Antoniou J, Demers CN, Beaudoin G, Goswami T, Mwale F, Aebi M, Alini M (2004) Apparent diffusion coefficient of intervertebral discs related to matrix composition and integrity. Magn Reson Imaging 22:963–972. doi:10.1016/j.mri.2004.02.011

    Article  PubMed  Google Scholar 

  19. Arun R, Freeman BJC, Scammell BE, McNally DS, Cox E, Gowland P (2009) 2009 ISSLS Prize Winner: what influence does sustained mechanical load have on diffusion in the human intervertebral disc? An in vivo study using serial postcontrast magnetic resonance imaging. Spine 34:2324–2337. doi:10.1097/Brs.0b013e3181b4df92

    Article  PubMed  Google Scholar 

  20. Jackson A, Yao H, Brown MD, Gu WY (2006) Anisotropic ion diffusivity in intervertebral disc: an electrical conductivity approach. Spine 31:2783–2789. doi:10.1097/01.brs.0000245842.02717.1b

    Article  PubMed  Google Scholar 

  21. Torzilli PA (1993) Effects of temperature, concentration and articular surface removal on transient solute diffusion in articular cartilage. Med Biol Eng Comput 31:S93–S98. doi:10.1007/bf02446656

    Article  PubMed  Google Scholar 

  22. Johnstone B, Urban JPG, Roberts S, Menage J (1992) The fluid content of the human intervertebral-disk—comparison between fluid content and swelling pressure profiles of disks removed at surgery and those taken postmortem. Spine 17:412–416. doi:10.1097/00007632-199204000-00006

    Article  CAS  PubMed  Google Scholar 

  23. Han WM, Nerurkar NL, Smith LJ, Jacobs NT, Mauck RL, Elliott DM (2012) Multi-scale structural and tensile mechanical response of annulus fibrosus to osmotic loading. Ann Biomed Eng 40:1610–1621. doi:10.1007/s10439-012-0525-4

    Article  PubMed  PubMed Central  Google Scholar 

  24. Acaroglu ER, Iatridis JC, Setton LA, Foster RJ, Mow VC, Weidenbaum M (1995) Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus. Spine 20:2690–2701 (Phila Pa 1976)

    Article  CAS  PubMed  Google Scholar 

  25. Masuoka K, Michalek AJ, MacLean JJ, Stokes IA, Iatridis JC (2007) Different effects of static versus cyclic compressive loading on rat intervertebral disc height and water loss in vitro. Spine 32:1974–1979. doi:10.1097/BRS.0b013e318133d591 (Phila Pa 1976)

    Article  PubMed  PubMed Central  Google Scholar 

  26. van der Veen AJ, Mullender M, Smit TH, Kingma I, van Dieen JH (2005) Flow-related mechanics of the intervertebral disc: the validity of an in vitro model. Spine 30:E534–E539 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  27. Han SM, Lee SY, Cho MH, Lee JK (2001) Disc hydration measured by magnetic resonance imaging in relation to its compressive stiffness in rat models. Proc Inst Mech Eng H 215:497–501. doi:10.1243/0954411011536091

    Article  CAS  PubMed  Google Scholar 

  28. Hirsch C, Galante J (1967) Laboratory conditions for tensile tests in annulus fibrosus from human intervertebral discs. Acta Orthop Scand 38:148–162. doi:10.3109/17453676708989629

    Article  CAS  PubMed  Google Scholar 

  29. Pflaster DS, Krag MH, Johnson CC, Haugh LD, Pope MH (1997) Effect of test environment on intervertebral disc hydration. Spine 22:133–139

    Article  CAS  PubMed  Google Scholar 

  30. Recuerda M, Cote SP, Villemure I, Perie D (2011) Influence of experimental protocols on the mechanical properties of the intervertebral disc in unconfined compression. J Biomech Eng 133:071006. doi:10.1115/1.4004411

    PubMed  Google Scholar 

  31. Jackson AR, Yuan TY, Huang CYC, Travascio F, Gu WY (2008) Effect of compression and anisotropy on the diffusion of glucose in annulus fibrosus. Spine 33:1–7

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ferguson SJ, Ito K, Nolte LP (2004) Fluid flow and convective transport of solutes within the intervertebral disc. J Biomech 37:213–221. doi:10.1016/S0021-9290(03)00250-1

    Article  PubMed  Google Scholar 

  33. Bezci SE, Nandy A, O’Connell GD (2015) Effect of hydration on healthy intervertebral disk mechanical stiffness. J Biomech Eng 137:101007. doi:10.1115/1.4031416

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Tavakoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavakoli, J. Region–media coupling in characterization and modelling of the disc annulus single lamella swelling. Med Biol Eng Comput 55, 1483–1492 (2017). https://doi.org/10.1007/s11517-016-1609-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1609-3

Keywords