Skip to main content

Advertisement

Log in

Effects on the torsional vibration behavior in the investigation of dental implant osseointegration using resonance frequency analysis: a numerical approach

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Resonance frequency analysis (RFA) methods are widely used to assess implant stability, particularly the Osstell® device. The potential effects associated with this method have been discussed in the literature. Torsional RFA (T-RFA), mentioned in our previous study, could represent a new measurement method. The purpose of this study was to simulate T-shaped and Osstell® transducer–implant–bone system models; compare their vibration modes and corresponding resonance frequencies; and investigate the effects of their parameters, such as the effective implant length (EIL), bone quality, and osseointegration level, on the torsional resonance frequency (TRF) and bending resonance frequency (BRF) using three-dimensional finite element analysis. Following the finite element model validation, the TRFs and BRFs for three different EILs and four types of bone quality were obtained, and the change rates during 25 degrees of osseointegration were observed. The analysis showed that an increase in the EIL and a decrease in bone quality have less effect on the declination rate of TRFs than on that of BRFs. TRFs are highly sensitive to the stiffness of the implant–bone interface during the healing period. It was concluded that T-RFA has better sensitivity and specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Andersson P, Verrocchi D, ViinamaKi R, Sennerby L (2008) A one year clinical, radiographic and RFA study of Neoss implants. Appl Osseointegration Res 6:23–26

    Google Scholar 

  2. Aparicio C, Lang NP, Rangert B (2006) Validity and clinical significance of biomechanical testing of implant/bone interface. Clin Oral Implants Res 17(Suppl 2):2–7

    Article  PubMed  Google Scholar 

  3. Barewal RM, Oates TW, Meredith N, Cochran DL (2003) Resonance frequency measurement of implant stability in vivo on implants with a sandblasted and acid-etched surface. Int J Oral Maxillofac Implants 18:641–651

    PubMed  Google Scholar 

  4. Brånemark PI, Zarb GA, Albrektsson T (1985) Introduction to osseointegration. In: Brånemark PI, Zarb GA, Albrektsson T (eds) Tissue integrated prostheses: osseointegration in clinical dentistry. Quintessence, Chicago

    Google Scholar 

  5. Carter DR, Hayes WC (1977) The compressive behavior of bone as a two-phase porous structure. J Bone Jt Surg Am 59:954–962

    Article  CAS  Google Scholar 

  6. Cawley P, Pavlakovic B, Alleyne DN, George R, Back T, Meredith N (1998) The design of a vibration transducer to monitor the integrity of dental implants. Proc Inst Mech Eng H 212:265–272

    Article  CAS  PubMed  Google Scholar 

  7. Chang MC, Ko CC, Liu CC, Douglas WH, DeLong R, Seong WJ, Hodges J, An KN (2003) Elasticity of alveolar bone near dental implant–bone interfaces after one month’s healing. J Biomech 36:1209–1214

    Article  CAS  PubMed  Google Scholar 

  8. Chang PC, Seol YJ, Kikuchi N, Goldstein SA, Giannobile WV (2010) Functional apparent moduli as predictors of oral implant osseointegration dynamics. J Biomed Mater Res B Appl Biomater 94:118–126

    PubMed  PubMed Central  Google Scholar 

  9. Deng B, Tan KB, Liu GR, Lu Y (2008) Influence of osseointegration degree and pattern on resonance frequency in the assessment of dental implant stability using finite element analysis. Int J Oral Maxillofac Implants 23:1082–1088

    CAS  PubMed  Google Scholar 

  10. Huang H, Pan L, Lee S, Chiu C, Fan K, Ho K (2000) Assessing the implant/bone interface by using natural frequency analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 82:323–332

    Google Scholar 

  11. Huang H, Lee S, Yeh C, Lin C (2002) Resonance frequency assessment of dental implant stability with various bone qualities: a numerical approach. Clin Oral Implants Res 13:65–74

    Article  PubMed  Google Scholar 

  12. Huang H, Chiu C, Yeh C, Lin C, Lin L, Lee S (2003) Early detection of implant healing process using resonance frequency analysis. Clin Oral Implants Res 14:437–443

    Article  PubMed  Google Scholar 

  13. Kurniawan D, Nor FM, Lee HY, Lim JY (2012) Finite element analysis of bone-implant biomechanics: refinement through featuring various osseointegration conditions. Int J Oral Maxillofac Surg 41:1090–1096

    Article  CAS  PubMed  Google Scholar 

  14. Lekholm U, Zarb GA (1985) Patient selection and preparation. In: Brånemark PI, Zarb GA, Albrektsson T (eds) Tissue-integrated prostheses: osseointegration in clinical dentistry. Quintessence, Chicago

    Google Scholar 

  15. Lian Z, Guan H, Ivanovski S, Loo YC, Johnson NW, Zhang H (2010) Effect of bone to implant contact percentage on bone remodelling surrounding a dental implant. Int J Oral Maxillofac Surg 39:690–698

    Article  CAS  PubMed  Google Scholar 

  16. Makary C, Rebaudi A, Sammartino G, Naaman N (2012) Implant primary stability determined by resonance frequency analysis: correlation with insertion torque, histologic bone volume, and torsional stability at 6 weeks. Implant Dent 21:474–480

    Article  PubMed  Google Scholar 

  17. Manresa C, Bosch M, Echeverria JJ (2014) The comparison between implant stability quotient and bone-implant contact revisited: an experiment in Beagle dog. Clin Oral Implants Res 25:1213–1221

    Article  PubMed  Google Scholar 

  18. Meredith N, Alleyne D, Cawley P (1996) Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin Oral Implants Res 7:261–267

    Article  CAS  PubMed  Google Scholar 

  19. Meredith N, Shagaldi F, Alleyne D, Sennerby L, Cawley P (1997) The application of resonance frequency measurements to study the stability of titanium implants during healing in the rabbit tibia. Clin Oral Implants Res 8:234–243

    Article  CAS  PubMed  Google Scholar 

  20. Natali AN, Pavan PG, Schileo E, Williams KR (2006) A numerical approach to resonance frequency analysis for the investigation of oral implant osseointegration. J Oral Rehabil 33:674–681

    Article  CAS  PubMed  Google Scholar 

  21. Natali AN, Carniel EL, Pavan PG (2009) Dental implants press fit phenomena: biomechanical analysis considering bone inelastic response. Dent Mater 25:573–581

    Article  PubMed  Google Scholar 

  22. Nedir R, Bischof M, Szmukler-Moncler S, Bernard JP, Samson J (2004) Predicting osseointegration by means of implant primary stability. Clin Oral Implants Res 15:520–528

    Article  PubMed  Google Scholar 

  23. Olsson M, Urde G, Andersen JB, Sennerby L (2003) Early loading of maxillary fixed cross-arch dental prostheses supported by six or eight oxidized titanium implants: results after 1 year of loading, case series. Clin Implant Dent Relat Res 5(Suppl 1):81–87

    Article  PubMed  Google Scholar 

  24. Pattijn V, Van Lierde C, Van der Perre G, Naert I, Vander SJ (2006) The resonance frequencies and mode shapes of dental implants: rigid body behaviour versus bending behaviour. A numerical approach. J Biomech 39:939–947

    Article  CAS  PubMed  Google Scholar 

  25. Pattijn V, Jaecques SV, De Smet E, Muraru L, Van Lierde C, Van der Perre G, Naert I, Vander SJ (2007) Resonance frequency analysis of implants in the guinea pig model: influence of boundary conditions and orientation of the transducer. Med Eng Phys 29:182–190

    Article  CAS  PubMed  Google Scholar 

  26. Salvi GE, Lang NP (2004) Diagnostic parameters for monitoring peri-implant conditions. Int J Oral Maxillofac Implants 19(Suppl):116–127

    PubMed  Google Scholar 

  27. Sennerby L, Meredith N (2008) Implant stability measurements using resonance frequency analysis: biological and biomechanical aspects and clinical implications. Periodontol 2000 47:51–66

    Article  PubMed  Google Scholar 

  28. Tang YL, Li B, Jin W, Li DH (2014) Torsional resonance frequency analysis: a novel method for assessment of dental implant stability. Clin Oral Implants Res 26:615–622

    Article  PubMed  Google Scholar 

  29. Turkyilmaz I, Sennerby L, Yilmaz B, Bilecenoglu B, Ozbek EN (2009) Influence of defect depth on resonance frequency analysis and insertion torque values for implants placed in fresh extraction sockets: a human cadaver study. Clin Implants Dent Relat Res 11:52–58

    Article  Google Scholar 

  30. Ustun Y, Erdogan O, Kurkcu M, Akova T, Damlar I (2008) Effects of low-intensity pulsed ultrasound on dental implant osseointegration: a preliminary report. Eur J Dent 2:254–262

    PubMed  PubMed Central  Google Scholar 

  31. Wang K, Li DH, Guo JF, Liu BL, Shi SQ (2009) Effects of buccal bi-cortical anchorages on primary stability of dental implants: a numerical approach of natural frequency analysis. J Oral Rehabil 36:284–291

    Article  CAS  PubMed  Google Scholar 

  32. Weinans H, Huiskes R, Grootenboer HJ (1992) Effects of material properties of femoral hip components on bone remodeling. J Orthop Res 10:845–853

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (30973333).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dehua Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, M., Li, B. & Li, D. Effects on the torsional vibration behavior in the investigation of dental implant osseointegration using resonance frequency analysis: a numerical approach. Med Biol Eng Comput 55, 1649–1658 (2017). https://doi.org/10.1007/s11517-017-1612-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1612-3

Keywords

Navigation