Abstract
In daily life, a person’s gait—an important marker for his/her health status—is usually assessed using inertial sensors fixed to lower limbs or trunk. Such sensor locations are not well suited for continuous and long duration measurements. A better location would be the wrist but with the drawback of the presence of perturbative movements independent of walking. The aim of this study was to devise and validate an algorithm able to accurately estimate walking cadence and speed for daily life walking in various environments based on acceleration measured at the wrist. To this end, a cadence likelihood measure was designed, automatically filtering out perturbative movements and amplifying the periodic wrist movement characteristic of walking. Speed was estimated using a piecewise linear model. The algorithm was validated for outdoor walking in various and challenging environments (e.g., trail, uphill, downhill). Cadence and speed were successfully estimated for all conditions. Overall median (interquartile range) relative errors were −0.13% (−1.72 2.04%) for instantaneous cadence and −0.67% (−6.52 6.23%) for instantaneous speed. The performance was comparable to existing algorithms for trunk- or lower limb-fixed sensors. The algorithm’s low complexity would also allow a real-time implementation in a watch.








Similar content being viewed by others
References
Abraham P, Noury-Desvaux B, Gernigon M, Mahé G, Sauvaget T, Leftheriotis G, Le Faucheur A (2012) The inter- and intra-unit variability of a low-cost GPS data logger/receiver to study human outdoor walking in view of health and clinical studies. PLoS ONE 7:e31338. doi:10.1371/journal.pone.0031338
Ahola T (2010) Pedometer for running activity using accelerometer sensors on the wrist. Med Equip Insights. doi:10.4137/MEI.S3748
Alaqtash M, Yu H, Brower R, Abdelgawad A, Sarkodie-Gyan T (2011) Application of wearable sensors for human gait analysis using fuzzy computational algorithm. Eng Appl Artif Intell 24:1018–1025. doi:10.1016/j.engappai.2011.04.010
Aminian K, Najafi B, Büla C, Leyvraz P-F, Robert P (2002) Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J Biomech 35:689–699
Baker R (2006) Gait analysis methods in rehabilitation. J Neuroeng Rehabil 3:4. doi:10.1186/1743-0003-3-4
Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160
Bonato P (2005) Advances in wearable technology and applications in physical medicine and rehabilitation. J Neuroeng Rehabil. doi:10.1186/1743-0003-2-2
Boyer KA, Andriacchi TP, Beaupre GS (2012) The role of physical activity in changes in walking mechanics with age. Gait Posture 36:149–153. doi:10.1016/j.gaitpost.2012.02.007
Brand RA (1989) Can biomechanics contribute to clinical orthopaedic assessments? Iowa Orthop J 9:61–64
Brodie M, Lord S, Coppens M, Annegarn J, Delbaere K (2015) Eight weeks remote monitoring using a freely worn device reveals unstable gait patterns in older fallers. IEEE Trans Biomed Eng 9294:1. doi:10.1109/TBME.2015.2433935
Butte NF, Ekelund U, Westerterp KR (2012) Assessing physical activity using wearable monitors: measures of physical activity. Med Sci Sports Exerc 44:S5–S12. doi:10.1249/MSS.0b013e3182399c0e
Cedervall Y, Halvorsen K, Åberg AC (2014) A longitudinal study of gait function and characteristics of gait disturbance in individuals with Alzheimer’s disease. Gait Posture. doi:10.1016/j.gaitpost.2013.12.026
El-Amrawy F, Nounou MI (2015) Are currently available wearable devices for activity tracking and heart rate monitoring accurate, precise, and medically beneficial? Healthc Inform Res 21:315–320. doi:10.4258/hir.2015.21.4.315
Elble RJ, Thomas SS, Higgins C, Colliver J (1991) Stride-dependent changes in gait of older people. J Neurol 238:1–5. doi:10.1007/BF00319700
Elhoushi M, Georgy J, Noureldin A, Korenberg MJ (2016) Motion mode recognition for indoor pedestrian navigation using portable devices. IEEE Trans Instrum Meas 65:208–221. doi:10.1109/TIM.2015.2477159
Ferraris F, Grimaldi U, Parvis M (1995) Procedure for effortless in-field calibration of three-axis rate gyros and accelerometers. Sensors Mater 7:311–330
Fulk GD, Combs SA, Danks KA, Nirider CD, Raja B, Reisman DS (2014) Accuracy of 2 activity monitors in detecting steps in people with stroke and traumatic brain injury. Phys Ther 94:222–229. doi:10.2522/ptj.20120525
Harris FJ (1978) On the use of windows for harmonic analysis with the discrete Fourier transform. Proc IEEE 66:51–83. doi:10.1109/PROC.1978.10837
Hausdorff JM, Cudkowicz ME, Firtion R (1998) Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson’ s disease and huntington’ s disease. Mov Disord 13:428–437
He H, Garcia EA (2009) Learning from imbalanced data. IEEE Trans Knowl Data Eng 21:1263–1284. doi:10.1109/TKDE.2008.239
Henriksen M, Lund H, Moe-Nilssen R, Bliddal H, Danneskiod-Samsøe B (2004) Test–retest reliability of trunk accelerometric gait analysis. Gait Posture 19:288–297. doi:10.1016/S0966-6362(03)00069-9
Jasiewicz JM, Allum JHJ, Middleton JW, Barriskill A, Condie P, Purcell B, Li RCT (2006) Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals. Gait Posture 24:502–509. doi:10.1016/j.gaitpost.2005.12.017
Karuei I, Schneider OS, Stern B, Chuang M, MacLean KE (2013) RRACE: robust realtime algorithm for cadence estimation. Pervasive Mob Comput. doi:10.1016/j.pmcj.2013.09.006
Macleod CA, Conway BA, Allan DB, Galen SS (2014) Development and validation of a low-cost, portable and wireless gait assessment tool. Med Eng Phys 36:541–546. doi:10.1016/j.medengphy.2013.11.011
Mannini A, Intille SS, Rosenberger M, Sabatini AM, Haskell W (2013) Activity recognition using a single accelerometer placed at the wrist or ankle. Med Sci Sports Exerc 45:2193–2203. doi:10.1249/MSS.0b013e31829736d6
Mariani B, Hoskovec C, Rochat S, Büla C, Penders J, Aminian K (2010) 3D gait assessment in young and elderly subjects using foot-worn inertial sensors. J Biomech 43:2999–3006. doi:10.1016/j.jbiomech.2010.07.003
Mariani B, Rouhani H, Crevoisier X, Aminian K (2013) Quantitative estimation of foot-flat and stance phase of gait using foot-worn inertial sensors. Gait Posture 37:229–234. doi:10.1016/j.gaitpost.2012.07.012
Meyns P, Bruijn SM, Duysens J (2013) The how and why of arm swing during human walking. Gait Posture 38:555–562. doi:10.1016/j.gaitpost.2013.02.006
Moe-Nilssen R, Helbostad JL (2004) Estimation of gait cycle characteristics by trunk accelerometry. J Biomech 37:121–126. doi:10.1016/S0021-9290(03)00233-1
Morris ME, Iansek R, Matyas TA, Summers JJ (1994) Ability to modulate walking cadence remains intact in Parkinson’s disease. J Neurol Neurosurg Psychiatry 57:1532–1534. doi:10.1136/jnnp.57.12.1532
Nelles O (2001) Nonlinear system identification. Springer, Berlin. doi:10.1007/978-3-662-04323-3
Oberg T, Karsznia A, Oberg K (1993) Basic gait parameters: reference data for normal subjects, 10–79 years of age. J Rehabil Res Dev 30:210–223
Paraschiv-Ionescu A, Perruchoud C, Buchser E, Aminian K (2012) Barcoding human physical activity to assess chronic pain conditions. PLoS ONE 7:e32239. doi:10.1371/journal.pone.0032239
Parviainen J, Kantola J, Collin J (2008) Differential barometry in personal navigation. In: 2008 IEEE/ION position, Locat. Navig. Symp. IEEE, pp 148–152
Pasolini F, Binda I (2008) Pedometer device and step detection method using an algorithm for self-adaptive computation of acceleration thresholds. U.S. Patent 7,463,997
Quach L, Galica A, Jones R, Procter-Gray E, Manor B, Hannan M, Lipsitz L (2011) The non-linear relationship between gait speed and falls: the mobilize boston study. J Am Geriatr Soc 59:1069–1073. doi:10.1111/j.1532-5415.2011.03408.x.The
Rampp A, Barth J, Schülein S, Gaßmann KG, Klucken J, Eskofier BM (2015) Inertial sensor-based stride parameter calculation from gait sequences in geriatric patients. IEEE Trans Biomed Eng 62:1089–1097. doi:10.1109/TBME.2014.2368211
Redd CB, Member S, Bamberg SJM, Member S (2012) A wireless sensory feedback device for real-time gait feedback and training. Mechatron IEEEASME Trans 17:425–433
Rochat S, Büla CJ, Martin E, Seematter-Bagnoud L, Karmaniola A, Aminian K, Piot-Ziegler C, Santos-Eggimann B (2010) What is the relationship between fear of falling and gait in well-functioning older persons aged 65 to 70 years? Arch Phys Med Rehabil 91:879–884. doi:10.1016/j.apmr.2010.03.005
Samson MM, Crowe A, de Vreede PL, Dessens JA, Duursma SA, Verhaar HJ (2001) Differences in gait parameters at a preferred walking speed in healthy subjects due to age, height and body weight. Aging (Milano) 13:16–21. doi:10.1007/BF03351489
Smith JO (2010) Physical audio signal processing. W3K Publishing
Studenski S, Perera S, Patel K, Rosano C, Faulkner K, Inzitari M, Brach J, Chandler J, Cawthon P, Connor EB, Nevitt M, Visser M, Kritchevsky S, Badinelli S, Harris T, Newman AB, Cauley J, Ferrucci L, Guralnik J (2011) Gait speed and survival in older adults. JAMA 305:50–58. doi:10.1001/jama.2010.1923
Susi M, Renaudin V, Lachapelle G (2013) Motion mode recognition and step detection algorithms for mobile phone users. Sensors (Basel) 13:1539–1562. doi:10.3390/s130201539
Tan H, Wilson AM, Lowe J (2008) Measurement of stride parameters using a wearable GPS and inertial measurement unit. J Biomech 41:1398–1406. doi:10.1016/j.jbiomech.2008.02.021
Tao W, Liu T, Zheng R, Feng H (2012) Gait analysis using wearable sensors. Sensors (Basel) 12:2255–2283. doi:10.3390/s120202255
Taraldsen K, Chastin SFM, Riphagen II, Vereijken B, Helbostad JL (2012) Physical activity monitoring by use of accelerometer-based body-worn sensors in older adults: a systematic literature review of current knowledge and applications. Maturitas 71:13–19. doi:10.1016/j.maturitas.2011.11.003
Terrier P, Ladetto Q, Merminod B, Schutz Y (2000) High-precision satellite positioning system as a new tool to study the biomechanics of human locomotion. J Biomech 33:1717–1722. doi:10.1016/S0021-9290(00)00133-0
Trojaniello D, Cereatti A, Pelosin E, Avanzino L, Mirelman A, Hausdorff JM, Della Croce U (2014) Estimation of step-by-step spatio-temporal parameters of normal and impaired gait using shank-mounted magneto-inertial sensors: application to elderly, hemiparetic, parkinsonian and choreic gait. J Neuroeng Rehabil 11:152. doi:10.1186/1743-0003-11-152
Yang S, Li Q (2012) Inertial sensor-based methods in walking speed estimation: a systematic review. Sensors (Basel) 12:6102–6116. doi:10.3390/s120506102
Zhao N (2010) Full-featured pedometer design realized with 3-Axis digital accelerometer. Analog Dialogue 44:1–5
Zijlstra W, Hof AL (2003) Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture 18:1–10
Acknowledgements
This study was financed by the CTI Grant No 14787.1 PFNM-NM. The authors would like to thank all subjects that agreed walking in various meteorological conditions ranging from cold to hot and from sun to light rain.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fasel, B., Duc, C., Dadashi, F. et al. A wrist sensor and algorithm to determine instantaneous walking cadence and speed in daily life walking. Med Biol Eng Comput 55, 1773–1785 (2017). https://doi.org/10.1007/s11517-017-1621-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11517-017-1621-2