Abstract
Effective feature extraction and classification methods are of great importance for motor imagery (MI)-based brain–computer interface (BCI) systems. The common spatial pattern (CSP) algorithm is a widely used feature extraction method for MI-based BCIs. In this work, we propose a novel spatial-frequency-temporal optimized feature sparse representation-based classification method. Optimal channels are selected based on relative entropy criteria. Significant CSP features on frequency-temporal domains are selected automatically to generate a column vector for sparse representation-based classification (SRC). We analyzed the performance of the new method on two public EEG datasets, namely BCI competition III dataset IVa which has five subjects and BCI competition IV dataset IIb which has nine subjects. Compared to the performance offered by the existing SRC method, the proposed method achieves average classification accuracy improvements of 21.568 and 14.38% for BCI competition III dataset IVa and BCI competition IV dataset IIb, respectively. Furthermore, our approach also shows better classification performance when compared to other competing methods for both datasets.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11517-017-1622-1/MediaObjects/11517_2017_1622_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11517-017-1622-1/MediaObjects/11517_2017_1622_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11517-017-1622-1/MediaObjects/11517_2017_1622_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11517-017-1622-1/MediaObjects/11517_2017_1622_Fig4_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11517-017-1622-1/MediaObjects/11517_2017_1622_Fig5_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11517-017-1622-1/MediaObjects/11517_2017_1622_Fig6_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11517-017-1622-1/MediaObjects/11517_2017_1622_Fig7_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11517-017-1622-1/MediaObjects/11517_2017_1622_Fig8_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11517-017-1622-1/MediaObjects/11517_2017_1622_Fig9_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11517-017-1622-1/MediaObjects/11517_2017_1622_Fig10_HTML.gif)
Similar content being viewed by others
References
Ang KK, Chin ZY, Wang CC, Guan CT, Zhang HH (2012) Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Front Neurosci. doi:10.3389/fnins.2012.00039
Ang KK, Chin ZY, Zhang HH, Guan CT (2012) Mutual information-based selection of optimal spatial-temporal patterns for single-trial EEG-based BCIs. Pattern Recogn 45:2137–2144. doi:10.1016/j.patcog.2011.04.018
Arvaneh M, Guan CT, Ang KK, Quek C (2013) Optimizing spatial filters by minimizing within-class dissimilarities in electroencephalogram-based brain–computer interface. IEEE Trans Neural Netw Learn Syst 24:610–619. doi:10.1109/tnnls.2013.2239310
Bhattacharyya S, Konar A, Tibarewala DN (2014) Motor imagery, P300 and error-related EEG-based robot arm movement control for rehabilitation purpose. Med Biol Eng Compu 52:1007–1017. doi:10.1007/s11517-014-1204-4
Blankertz B, Muller KR, Krusienski DJ, Schalk G, Wolpaw JR, Schlogl A, Pfurtscheller G, Millan JDR, Schroder M, Birbaumer N (2006) The BCI competition III: validating alternative approaches to actual BCI problems. IEEE Trans Neural Syst Rehabil Eng 14:153–159. doi:10.1109/tnsre.2006.875642
Blankertz B, Tomioka R, Lemm S, Kawanabe M, Muller KR (2008) Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process Mag 25:41–56. doi:10.1109/msp.200790.900,9
Der G, Deary IJ (2006) Age and sex differences in reaction time in adulthood: results from the United Kingdom Health and Lifestyle Survey. Psychol Aging 21:62–73. doi:10.1037/0882-7974.21.1.62
Dornhege G, Blankertz B, Krauledat M, Losch F, Curio G, Muller KR (2006) Combined optimization of spatial and temporal filters for improving brain–computer interfacing. IEEE Trans Biomed Eng 53:2274–2281. doi:10.1109/tbme.2006.883649
Gemmeke JF, Virtanen T, Hurmalainen A (2011) Exemplar-based sparse representations for noise robust automatic speech recognition. IEEE Trans Audio Speech Lang Process 19:2067–2080. doi:10.1109/tasl.2011.2112350
Hadjidimitriou S, Zacharakis A, Doulgeris P, Panoulas K, Hadjileontiadis L, Panas S (2010) Sensorimotor cortical response during motion reflecting audiovisual stimulation: evidence from fractal EEG analysis. Med Biol Eng Compu 48:561–572. doi:10.1007/s11517-010-0606-1
Hamedi M, Salleh SH, Noor AM (2016) Electroencephalographic motor imagery brain connectivity analysis for BCI: a review. Neural Comput 28:999–1041. doi:10.1162/NECO_a_00838
Higashi H, Tanaka T (2013) Common spatio–time–frequency patterns for motor imagery-based brain machine interfaces. Comput Intell Neurosci. doi:10.1155/2013/537218
Ince NF, Goksu F, Tewfik AH, Arica S (2009) Adapting subject specific motor imagery EEG patterns in space–time–frequency for a brain computer interface. Biomed Signal Process Control 4:236–246. doi:10.1016/j.bspc.2009.03.005
Kee CY, Ponnambalam SC, Loo CK (2015) Multi-objective genetic algorithm as channel selection method for P300 and motor imagery data set. Neurocomputing 161:120–131. doi:10.1016/j.neucom.2015.02.057
Kim SJ, Koh K, Lustig M, Boyd S, Gorinevsky D (2007) An interior-point method for large-scale l(1)-regularized least squares. IEEE J Sel Top Signal Process 1:606–617. doi:10.1109/jstsp.2007.910971
Lemm S, Blankertz B, Curio G, Muller KR (2005) Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans Biomed Eng 52:1541–1548. doi:10.1109/tbme.2005.851521
Li MA, Guo SD, Yang JF, Sun YJ (2016) A novel EEG feature extraction method based on OEMD and CSP algorithm. J Intell Fuzzy Syst 30:2971–2983. doi:10.3233/ifs-151896
Mallat SG, Zhifeng Z (1993) Matching pursuits with time–frequency dictionaries. IEEE Trans Signal Process 41:3397–3415. doi:10.1109/78.258082
McFarland DJ, McCane LM, David SV, Wolpaw JR (1997) Spatial filter selection for EEG-based communication. Electroencephalogr Clin Neurophysiol 103(3):386–394. doi:10.1016/s0013-4694(97)00022-2
Mei X, Ling HB (2011) Robust visual tracking and vehicle classification via sparse representation. IEEE Trans Pattern Anal Mach Intell 33:2259–2272. doi:10.1109/tpami.2011.66
Meng JJ, Huang G, Zhang DG, Zhu XY (2013) Optimizing spatial spectral patterns jointly with channel configuration for brain–computer interface. Neurocomputing 104:115–126. doi:10.1016/j.neucom.2012.11.004
Muller-Putz GR, Scherer R, Pfurtscheller G, Rupp R (2005) EEG-based neuroprosthesis control: a step towards clinical practice. Neurosci Lett 382:169–174. doi:10.1016/j.neulet.2005.03.021
Pfurtscheller G, Neuper C (1997) Motor imagery activates primary sensorimotor area in humans. Neurosci Lett 239:65–68. doi:10.1016/s0304-3940(97)00889-6
Pfurtscheller G, Neuper C, Ramoser H, Muller-Gerking J (1999) Visually guided motor imagery activates sensorimotor areas in humans. Neurosci Lett 269:153–156. doi:10.1016/s0304-3940(99)00452-8
Satti AR, Coyle D, Prasad G, IEEE (2009) Spatio-spectral and temporal parameter searching using class correlation analysis and particle swarm optimization for a brain computer interface. In: 2009 IEEE international conference on systems, man and cybernetics. IEEE international conference on systems man and cybernetics conference proceedings. pp 1731–1735. doi:10.1109/icsmc.2009.5346679
Sannelli C, Dickhaus T, Halder S, Hammer E-M, Mueller K-R, Blankertz B (2010) On optimal channel configurations for SMR-based brain–computer interfaces. Brain Topogr 23(2):186–193. doi:10.1007/s10548-010-0135-0
Shin Y, Lee S, Lee J, Lee HN (2012) Sparse representation-based classification scheme for motor imagery-based brain–computer interface systems. J Neural Eng. doi:10.1088/1741-2560/9/5/056002
Shin Y, Lee S, Ahn M, Cho H, Jun SC, Lee HN (2015) Noise robustness analysis of sparse representation based classification method for non-stationary EEG signal classification. Biomed Signal Process Control 21:8–18. doi:10.1016/j.bspc.2015.05.007
Shin Y, Lee S, Ahn M, Cho H, Jun SC, Lee HN (2015) Simple adaptive sparse representation based classification schemes for EEG based brain–computer interface applications. Comput Biol Med 66:29–38. doi:10.1016/j.comphiomed.2015.08.017
Suk HI, Lee SW (2013) A novel Bayesian framework for discriminative feature extraction in brain–computer interfaces. IEEE Trans Pattern Anal Mach Intell 35:286–299. doi:10.1109/tpami.2012.69
Thomas KP, Guan CT, Lau CT, Vinod AP, Ang KK (2009) A new discriminative common spatial pattern method for motor imagery brain–computer interfaces. IEEE Trans Biomed Eng 56:2730–2733. doi:10.1109/tbme.2009.2026181
Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B Methodol 58:267–288
Vu VQ, Yu B, Kass RE (2009) Information in the nonstationary case. Neural Comput 21:688–703. doi:10.1162/neco.2008.01-08-700
Wei QG, Wei ZH (2015) Binary particle swarm optimization for frequency band selection in motor imagery based brain–computer interfaces. Bio-Med Mater Eng 26:S1523–S1532. doi:10.3233/bme-151451
Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain–computer interfaces for communication and control. Clin Neurophysiol 113:767–791. doi:10.1016/s1388-2457(02)00057-3
Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31:210–227. doi:10.1109/tpami.2008.79
Wu B, Yang F, Zhang JC, Wang YW, Zheng XX, Chen WD (2012) A frequency-temporal-spatial method for motor-related electroencephalography pattern recognition by comprehensive feature optimization. Comput Biol Med 42:353–363. doi:10.1016/j.compbiomed.2011.11.014
Xu Q, Zhou H, Wang YJ, Huang J (2009) Fuzzy support vector machine for classification of EEG signals using wavelet-based features. Med Eng Phys 31:858–865. doi:10.1016/j.medengphy.2009.04.005
Xu P, Liu TJ, Zhang R, Zhang YS, Yao DZ (2014) Using particle swarm to select frequency band and time interval for feature extraction of EEG based BCI. Biomed Signal Process Control 10:289–295. doi:10.1016/j.bspc.2013.08.012
Novi Q, Guan C, Dat TH, Xue P, IEEE (2007) Sub-band common spatial pattern (SBCSP) for brain–computer interface. In: 2007 3rd International IEEE/EMBS conference on neural engineering, vols 1 and 2. doi:10.1109/cne.2007.369647
Zhang HH, Chin ZY, Ang KK, Guan CT, Wang CC (2011) Optimum spatio-spectral filtering network for brain–computer interface. IEEE Trans Neural Networks 22:52–63. doi:10.1109/tnn.2010.2084099
Zhang Y, Zhou GX, Jin J, Wang XY, Cichocki A (2015) Optimizing spatial patterns with sparse filter bands for motor-imagery based brain–computer interface. J Neurosci Methods 255:85–91. doi:10.1016/j.jneumeth.2015.08.004
Acknowledgements
Special thanks to the editors and anonymous reviewers for their positive and constructive comments and suggestions on our manuscript. The study was supported by the Jiangsu Province Science and Technology Support Program of China (No. BE2012740).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Miao, M., Wang, A. & Liu, F. A spatial-frequency-temporal optimized feature sparse representation-based classification method for motor imagery EEG pattern recognition. Med Biol Eng Comput 55, 1589–1603 (2017). https://doi.org/10.1007/s11517-017-1622-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11517-017-1622-1