Skip to main content
Log in

A new infant hybrid respiratory simulator: preliminary evaluation based on clinical data

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

A new hybrid (numerical–physical) simulator of the respiratory system, designed to simulate spontaneous and artificial/assisted ventilation of preterm and full-term infants underwent preliminary evaluation. A numerical, seven-compartmental model of the respiratory system mechanics allows the operator to simulate global and peripheral obstruction and restriction of the lungs. The physical part of the simulator is a piston-based construction of impedance transformer. LabVIEW real-time software coordinates the work of both parts of the simulator and its interaction with a ventilator. Using clinical data, five groups of “artificial infants” were examined: healthy full-term infants, very low-birth-weight preterm infants successfully (VLBW) and unsuccessfully extubated (VLBWun) and extremely low-birth-weight preterm infants without (ELBW) and with bronchopulmonary dysplasia (ELBW_BPD). Pressure-controlled ventilation was simulated to measure peak inspiratory pressure, mean airway pressure, total (patient + endotracheal tube) airway resistance (R), total dynamic compliance of the respiratory system (C), and total work of breathing by the ventilator (WOB). The differences between simulation and clinical parameters were not significant. High correlation coefficients between both types of data were obtained for R, C, and WOB (γ R  = 0.99, P < 0.0005; γ C  = 0.85, P < 0.005; γWOB = 0.96, P < 0.05, respectively). Thus, the simulator accurately reproduces infant respiratory system mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ETT:

Endotracheal tube

ID:

Inner diameter of ETT (mm)

R :

Total airway resistance of an intubated patient (kPa s l−1)

C :

Total dynamic compliance of respiratory system of an intubated patient (ml kPa−1)

R c :

Central airway resistance (kPa s l−1)

L :

Central airway inertance (kPa s2 l−1)

R 1, R 2 :

Resistance of peripheral airway in the first and second compartment, respectively (kPa s l−1)

C 1, C 2 :

Lung compliance in the first and second compartment, respectively (ml kPa−1)

T 1, T 2 :

Time constant for the first and second compartment of peripheral airway, respectively

C w :

Thorax compliance (ml kPa−1)

C x :

Gas compliance in piston chamber of TR

P A1, P A2 :

Alveolar pressure the first and second compartment, respectively (kPa)

P pl :

Pleural pressure (kPa)

P m :

Pressure at the input of the numerical model of respiratory system (kPa)

F m :

Flow at the input of the numerical model of respiratory system (l min−1)

P :

Pressure at input of TR (kPa)

F :

Flow at the input of TR (l min−1)

F 1, F 2 :

Gas flow in the first and second compartment, respectively (l min−1)

f :

Breath frequency (min−1)

ω :

Angular frequency (s−1)

FRC:

Fractional residual capacity (ml)

V :

Lung volume above FRC (ml)

V 1, V 2 :

Gas volume, in the first and second compartment, respectively (ml)

TR:

Impedance transformer

Z :

Input impedance of the simulator (kPa s l−1)

Z m :

Impedance of the numeric part of the simulator (kPa s l−1)

C x :

Pneumatic capacitor representing gas compliance in piston chamber of TR (ml kPa−1)

Z x :

Impedance of C x (kPa s l−1)

PC:

Pressure-controlled ventilation

MV:

Minute ventilation (l)

I:E :

Inspiration to expiration time ratio

PIP:

Peak inspiratory pressure (kPa)

MAP:

Mean airway pressure (kPa)

PEEP:

Positive end expiratory pressure

WOB:

Total work of breathing by the ventilator (J l−1)

FT:

A group of full-term infants,

FTp1:

A patient from the FT group with the highest R and the lowest C

VLBW:

A group of very low-birth-weight preterm infants successfully extubated

VLBWun:

A group of very low-birth-weight preterm infants with extubation failure

VLBWun_f:

A group of VLBWun ventilated with breath frequency: 35, 44 or 49 (min−1)

ELBW:

A group of extremely low-birth-weight preterm infants

ELBW_BPD:

A group of extremely low-birth-weight preterm infants with bronchopulmonary dysplasia

SD:

Standard deviation

δ R , δ C , δ PIP, δ MAP, δ WOB :

Percentage difference of R, C, PIP, MAP, and WOB, respectively, between equivalent patient cases (e.g., ELBW_BPD vs ELBW) within the group consisted of 10 cases (5 equivalent): FT, FTp1, VLBW_49, VLBWun_49, VLWB_44, VLBWun_44, VLBW_35, VLBWun_35, ELBW_BPD, ELBW

P :

Level of significance of the difference between groups

1 − β :

Test power

References

  1. Bhandari A, Panitch HB (2006) Pulmonary outcomes in bronchopulmonary dysplasia. Semin Perinatol 30:219–226. doi:10.1053/j.semperi.2006.05.009

    Article  PubMed  Google Scholar 

  2. Brown MK, Di Blasi RM (2011) Mechanical ventilation of the premature neonate. Respir Care 56:1298–1313. doi:10.4187/respcare.01429

    Article  PubMed  Google Scholar 

  3. Cecchini S, Schena E, Silvestri S (2011) An open-loop controlled active lung simulator for preterm infants. Med Eng Phys 33:47–55. doi:10.1016/j.medengphy.2010.09.001

    Article  PubMed  Google Scholar 

  4. Cuttano A, Scaramuzzo RT, Gentile M et al (2011) Education in neonatology by simulation: between reality and declaration of intent. J Matern Fetal Neonatal Med 24:97–98. doi:10.3109/14767058.2011.607572

    Article  PubMed  Google Scholar 

  5. Donn SM, Sinha SK (2006) Minimising ventilator induced lung injury in preterm infants. Arch Dis Child Fetal Neonatal Ed 91:F226–F230. doi:10.1136/adc.2005.082271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Doyle LW, Faber B, Callanan C et al (2006) Bronchopulmonary dysplasia in very low birth weight subjects and lung function in late adolescence. Pediatrics 118:108–113. doi:10.1542/peds.2005-2522

    Article  PubMed  Google Scholar 

  7. Fresiello L, Ferrari G, Di Molfetta A et al (2015) A cardiovascular simulator tailored for training and clinical uses. J Biomed Inform 57:100–112. doi:10.1016/j.jbi.2015.07.004

    Article  CAS  PubMed  Google Scholar 

  8. Fuchs SI, Gappa M (2011) Lung clearance index: clinical and research applications in children. Paediatr Respir Rev 12:264–270. doi:10.1016/j.prrv.2011.05.001

    Article  PubMed  Google Scholar 

  9. Garcia-Fernandez J, Castro L, Belda FJ (2010) Ventilating the newborn and child. Curr Anaesth Crit Care 21(5–6):262–268. doi:10.1016/j.cacc.2010.07.014

    Article  Google Scholar 

  10. Gerhardt T, Bancalari E (1980) Chestwall compliance in full-term and premature infants. Acta Paediatr Scand 69:359–364. doi:10.1111/j.1651-2227.1980.tb07093.x

    Article  CAS  PubMed  Google Scholar 

  11. Gien J, Kinsella JP (2011) Pathogenesis and treatment of bronchopulmonary dysplasia. Curr Opin Pediatr 23:305–313. doi:10.1097/MOP.0b013e328346577f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Greenough A (2008) Long-term pulmonary outcome in the preterm infant. Neonatology 93(4):324–327. doi:10.1159/000121459

    Article  PubMed  Google Scholar 

  13. Horsley A (2009) Lung clearance index in the assessment of airways disease. Respir Med 103:793–799. doi:10.1016/j.rmed.2009.01.025

    Article  PubMed  Google Scholar 

  14. Hulskamp G, Lum S, Stocks J et al (2009) Association of prematurity, lung disease and body size with lung volume and ventilation inhomogeneity in unsedated neonates: a multicentre study. Thorax 64:240–245. doi:10.1136/thx.2008.101758

    Article  CAS  PubMed  Google Scholar 

  15. Iyer NP, Chatburn R (2015) Evaluation of a nasal cannula in noninvasive ventilation using a lung simulator. Respir Care 60(4):508–512. doi:10.4187/respcare.03560

    Article  PubMed  Google Scholar 

  16. Landry JS, Chan T, Lands L, Menzies D (2011) Long-term impact of bronchopulmonary dysplasia on pulmonary function. Can Respir J 18:265–270

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lui K, Lloyd J, Ang E et al (2000) Early changes in respiratory compliance and resistance during the development of bronchopulmonary dysplasia in the era of surfactant therapy. Pediatr Pulmonol 30:282–290. doi:10.1002/1099-0496(200010)30:4<282:AID-PPUL2>3.0.CO;2-D

    Article  CAS  PubMed  Google Scholar 

  18. Moss T (2006) Respiratory consequences of preterm birth. Clin Exp Pharmacol Physiol 33(3):280–284. doi:10.1111/j.1440-1681.2006.04359.x

    Article  CAS  PubMed  Google Scholar 

  19. Onland W, Debray TP, Laughon MM et al (2013) Clinical prediction models for bronchopulmonary dysplasia: a systematic review and external validation study. BMC Pediatr 13:207. doi:10.1186/1471-2431-13-207

    Article  PubMed  PubMed Central  Google Scholar 

  20. Petak ZF, Babik B, Asztalos T, Hall GL, Deak Z, Sly PD (2003) Airway and tissue mechanics in anesthetized paralyzed children. Pediatr Pumonol 35:169–176. doi:10.1002/ppul.10252

    Article  Google Scholar 

  21. Product card: Adult & Infant Test Lung. http://www.michiganinstruments.com/training-test-lung-simulators/adult-infant-test-lung/. Accessed 3 May 2016

  22. Product card: ASL 5000 Adult/Neonatal Breathing Simulator. http://www.ingmarmed.com/products/asl-5000. Accessed 3 May 2016

  23. Product card: Newborn HAL® S3010. http://www.gaumard.com/s3010. Accessed 3 May 2016

  24. Product card: Smart Lung™ Infant Test Lung. http://www.imtmedical.com/enus/products/testlungs/infant/Pages/index.aspx#2. Accessed 3 May 2016

  25. Rovamo L, Nurmi E, Mattila MM et al (2015) Effect of a simulation-based workshop on multidisplinary teamwork of newborn emergencies: an intervention study. BMC Res Notes 8:671. doi:10.1186/s13104-015-1654-2

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sawyer T, Strandjord TP, Johnson KLD (2016) Neonatal airway simulators, how good are they? A comparative study of physical and functional fidelity. J Perinatol 36:151–156. doi:10.1038/jp.2015.161

    Article  CAS  PubMed  Google Scholar 

  27. Scaramuzzo R, Ciantelli M, Ii Baldoli et al (2013) MEchatronic REspiratory System SImulator for Neonatal Applications (MERESSINA) project: a novel bioengineering goal. Med Devices (Auckl) 6:115–121. doi:10.2147/MDER.S45524

    Google Scholar 

  28. Schibler A, Schneider M, Frey U, Kraemer R (2000) Moment ratio analysis of multiple breath nitrogen washout in infants with lung disease. Eur Respir J 15:1094–1101. doi:10.1034/j.1399-3003.2000.01518.x

    Article  CAS  PubMed  Google Scholar 

  29. Schmidt M, Foitzik B, Hochmuth O, Schmalisch G (1998) Computer simulation of the measured respiratory impedance in newborn infants and the effect of the measurement equipment. Med Eng Phys 20:220–228. doi:10.1016/S1350-4533(98)00006-X

    Article  CAS  PubMed  Google Scholar 

  30. Snepvangers Y, Peter de Winter JP, Burger H et al (2004) Neonatal respiratory mechanics and development of bronchial hyperresponsiveness in preterm infants. Early Hum Dev 78:105–118. doi:10.1016/j.earlhumdev.2004.04.004

    Article  PubMed  Google Scholar 

  31. Stankiewicz B, Darowski M, Glapiński J et al (2013) A new endotracheal tube for infants—laboratory and clinical assessment: a preliminary study. Paediatr Anaesth 23(5):440–445. doi:10.1111/pan.12123

    Article  PubMed  Google Scholar 

  32. Szymankiewicz M, Vidyasagar D, Gadzinowski J (2005) Predictors of successful extubation of preterm low-birth-weight infants with respiratory distress syndrome. Pediatr Crit Care Med 6:44–49. doi:10.1097/01.PCC.0000149136.28598.14

    Article  PubMed  Google Scholar 

  33. Trembath A, Laughon MM (2012) Predictors of bronchopulmonary dysplasia. Clin Perinatol 39:585–601. doi:10.1016/j.clp.2012.06.014

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tulic MK, Christodoulopoulos P, Hamid Q (2001) Small airway inflammation in asthma. Respir Res 2:333–339. doi:10.1186/rr83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vignaux L, Piquilloud L, Tourneux P et al (2014) Neonatal and adult ICU ventilators to provide ventilation in neonates, infants, and children: a bench model study. Respir Care 59:1463–1475. doi:10.4187/respcare.02540

    Article  PubMed  Google Scholar 

  36. Ward RM, Beachy JC (2003) Neonatal complications following preterm birth. BJOG Int J Obstet Gynaecol 110(Suppl 20):8–16. doi:10.1016/S1470-0328(03)00012-0

    Article  Google Scholar 

Download references

Funding sources

This research did not receive any specific grant from founding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Stankiewicz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stankiewicz, B., Pałko, K.J., Darowski, M. et al. A new infant hybrid respiratory simulator: preliminary evaluation based on clinical data. Med Biol Eng Comput 55, 1937–1948 (2017). https://doi.org/10.1007/s11517-017-1635-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1635-9

Keywords

Navigation