Skip to main content

Advertisement

Log in

Evaluation of the parameters affecting bone temperature during drilling using a three-dimensional dynamic elastoplastic finite element model

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

A three-dimensional dynamic elastoplastic finite element model was constructed and experimentally validated and was used to investigate the parameters which influence bone temperature during drilling, including the drill speed, feeding force, drill bit diameter, and bone density. Results showed the proposed three-dimensional dynamic elastoplastic finite element model can effectively simulate the temperature elevation during bone drilling. The bone temperature rise decreased with an increase in feeding force and drill speed, however, increased with the diameter of drill bit or bone density. The temperature distribution is significantly affected by the drilling duration; a lower drilling speed reduced the exposure duration, decreases the region of the thermally affected zone. The constructed model could be applied for analyzing the influence parameters during bone drilling to reduce the risk of thermal necrosis. It may provide important information for the design of drill bits and surgical drilling powers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abouzgia MB, James DF (1995) Measurements of shaft speed while drilling through bone. J Oral Maxillofac Surg 53:1308–1315

    Article  CAS  PubMed  Google Scholar 

  2. Abouzgia MB, Symington JM (1996) Effect of drill speed on bone temperature. Int J Oral Maxillofac Surg 25:394–399

    Article  CAS  PubMed  Google Scholar 

  3. Alam K, Mitrofanov AV, Silberschmidt VV (2009) Finite element analysis of forces of plane cutting of cortical bone. Comput Mater Sci 46:738–743

    Article  Google Scholar 

  4. Alam K, Mitrofanov AV, Silberschmidt VV (2010) Thermal analysis of orthogonal cutting of cortical bone using finite element simulations. Int J Exp Comput Biomech 1:236–251

    Article  Google Scholar 

  5. Allan W, Williams ED, Kerawala CJ (2005) Effects of repeated drill use on temperature of bone during preparation for osteosynthesis self-tapping screws. Br J Oral Maxillofac Surg 43:314–319

    Article  CAS  PubMed  Google Scholar 

  6. Ardan NI Jr, Janes JM, Herrick JF (1957) Ultrasonic energy and surgically produced defects in bone. J Bone Joint Surg Am 39:394–402

    Article  PubMed  Google Scholar 

  7. ASTM F1839–08 (2012) Standard specification for rigid polyurethane foam for use as a standard material for testing orthopaedic devices and instruments. ASTM International, West Conshohocken. doi:10.1520/F1839-08R12

    Google Scholar 

  8. Augustin G, Davila S, Mihoci K, Udiljak T, Vedrina DS, Antabak A (2008) Thermal osteonecrosis and bone drilling parameters revisited. Arch Orthop Trauma Surg 128:71–77

    Article  PubMed  Google Scholar 

  9. Augustin G, Davila S, Udilljak T, Staroveski T, Brezak D, Babic S (2012) Temperature changes during cortical bone drilling with a newly designed step drill and an internally cooled drill. Int Orthop 36(7):1449–1456

    Article  PubMed  PubMed Central  Google Scholar 

  10. Augustin G, Davila S, Udiljak T, Vedrina DS, Bagatin D (2009) Determination of spatial distribution of increase in bone temperature during drilling by infrared thermography: preliminary report. Arch Orthop Trauma Surg 129(5):703–709

    Article  PubMed  Google Scholar 

  11. Augustin G, Zigman T, Davila S, Udilljak T, Staroveski T, Brezak D, Babic S (2012) Cortical bone drilling and thermal osteonecrosis. Clin Biomech 27(4):313–325

    Article  Google Scholar 

  12. Bachus KN, Rondina MT, Hutchinson DT (2000) The effects of drilling force on cortical temperatures and their duration: an in vitro study. Med Eng Phys 22:685–691

    Article  CAS  PubMed  Google Scholar 

  13. Bonfield W, Li CH (1968) The temperature dependence of the deformation of bone. J Biomech 1:323–329

    Article  CAS  PubMed  Google Scholar 

  14. Eriksson A, Albrektsson T, Grane B, McQueen D (1982) Thermal injury to bone. A vital-microscopic description of heat effects. Int J Oral Surg 11:115–121

    Article  CAS  PubMed  Google Scholar 

  15. Eriksson AR, Albrektsson T (1983) Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent 50:101–107

    Article  CAS  PubMed  Google Scholar 

  16. Eriksson AR, Albrektsson T, Albrektsson B (1984) Heat caused by drilling cortical bone. Temperature measured in vivo in patients and animals. Acta Orthop Scand 55:629–631

    Article  CAS  PubMed  Google Scholar 

  17. Eriksson RA, Albrektsson T (1984) The effect of heat on bone regeneration: an experimental study in the rabbit using the bone growth chamber. J Oral Maxillofac Surg 42:705–711

    Article  CAS  PubMed  Google Scholar 

  18. Franssen BBGM, Van Diest PJ, Schuurman AH, Kon M (2008) Keeping osteocytes alive: a comparison of drilling and hammering K-wires into bone. J Hand Surg Eur 33:363–368. doi:10.1177/1753193408087104

    Article  CAS  Google Scholar 

  19. Inan M, Mizrak B, Ertem K, Harma A, Elmali N, Ayan I (2005) The factors affecting thermal necrosis secondary to the application of the Ilizarov transosseous wire. Acta Orthop Traumatol Turc 39(1):70–75

    PubMed  Google Scholar 

  20. Iyer S, Weiss C, Mehta A (1997) Effect of drill speed on heat production and the rate and quality of bone formation in dental implant osteotomies. Part I: relationship between drill speed and heat production. Int J Prosthodont 10:411–414

    CAS  PubMed  Google Scholar 

  21. Karaca F, Aksakal B, Kom M (2011) Influence of orthopaedic drilling parameters on temperature and histopathology of bovine tibia: an in vitro study. Med Eng Phys 33:1221–1227. doi:10.1016/j.medengphy.2011.05.013

    Article  CAS  PubMed  Google Scholar 

  22. Li S, Demirci E, Silberschmidt VV (2013) Variability and anisotropy of mechanical behavior of cortical bone in tension and compression. J Mech Behav Biomed Mater 21:109–120

    Article  PubMed  Google Scholar 

  23. Liaoa Z, Axinte DA (2016) On monitoring chip formation, penetration depth and cutting malfunctions in bone micro-drilling via acoustic emission. J Mater Process Technol 229:82–93

    Article  Google Scholar 

  24. Libonati F, Vergani L (2016) Understanding the structure-property relationship in cortical bone to design a biomimetic composite. Compos Struct 139:188–198

    Article  Google Scholar 

  25. Matthews LS, Green CA, Goldstein SA (1984) The thermal effects of skeletal fixation-pin insertion in bone. J Bone Joint Surg Am 66:1077–1083

    Article  CAS  PubMed  Google Scholar 

  26. Matthews LS, Hirsch C (1972) Temperatures measured in human cortical bone when drilling. J Bone Joint Surg Am 54:297–308

    Article  CAS  PubMed  Google Scholar 

  27. Mellal A, Wiskot HW, Botsis J, Scherrer SS, Belser UC (2004) Stimulating effect of implant loading on surrounding bone: comparison of three numerical models and validation by in vivo data. Clin Oral Implants Res 15:239–248

    Article  CAS  PubMed  Google Scholar 

  28. Moritz AR, Henriques FC (1947) Studies of thermal injury: II. The relative importance of time and surface temperature in the causation of cutaneous burns. Am J Pathol 23:695–720

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Pedersen MS, Moghaddam AZ, Bak K, Koch JS (1995) The effect of bone drilling on pain in gonarthrosis. Int Orthop 19:12–15

    Article  CAS  PubMed  Google Scholar 

  30. Tu YK, Chen LW, Ciou JS, Hsiao CK, Chen YC (2013) Finite element simulations of bone temperature rise during bone drilling based on a bone analog. J Med Biol Eng 33:269–274

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by E-Da Hospital (No. EDPJ 104-057 and EDAHP 104-029). All authors express great acknowledgments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Kun Hsiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YC., Tu, YK., Zhuang, JY. et al. Evaluation of the parameters affecting bone temperature during drilling using a three-dimensional dynamic elastoplastic finite element model. Med Biol Eng Comput 55, 1949–1957 (2017). https://doi.org/10.1007/s11517-017-1644-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1644-8

Keywords

Navigation