Skip to main content

Advertisement

Log in

Conformal mapping of carotid vessel wall and plaque thickness measured from 3D ultrasound images

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Measurements of vessel-wall-plus-plaque thickness (VWT) from 3D carotid ultrasound have been shown to be sensitive to the effect of pharmaceutical interventions. Since the geometry of carotid arteries is highly subject-specific, quantitative comparison of the distributions of point-wise VWT measured for different patients or for the same patients at different ultrasound scanning sessions requires the development of a mapping strategy to adjust for the geometric variability of different carotid surface models. In this paper, we present an algorithm mapping each 3D carotid surface to a 2D carotid template with an emphasis on preserving the local geometry of the carotid surface by minimizing local angular distortion. The previously described arc-length scaling (AL) approach was applied to generate an initial 2D VWT map. Using results established in the quasi-conformal theory, a new map was computed to compensate for the angular distortion incurred in AL mapping. As the 2D carotid template lies on an L-shaped non-convex domain, one-to-one correspondence of the mapping operation was not guaranteed. To address this issue, an iterative Beltrami differential chopping and smoothing procedure was developed to enforce bijectivity. Evaluations performed in the 20 carotid surface models showed that the reduction in average angular distortion made by the proposed algorithm was highly significant (P = 2.06 × 10−5). This study is the first study showing that a bijective conformal map to a non-convex domain can be obtained using the iterative Beltrami differential chopping and smoothing procedure. The improved consistency exhibited in the 2D VWT map generated by the proposed algorithm will allow for unbiased quantitative comparisons of VWT as well as local geometric and hemodynamic quantities in population studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ainsworth CD, Blake CC, Tamayo A, Beletsky V, Fenster A, Spence JD (2005) 3D ultrasound measurement of change in carotid plaque volume: a tool for rapid evaluation of new therapies. Stroke 36(9):1904–1909. doi:10.1161/01.STR.0000178543.19433.20

    Article  PubMed  Google Scholar 

  2. Antiga L, Piccinelli M, Botti L, Ene-Iordache B, Remuzzi A, Steinman DA (2008) An image-based modeling framework for patient-specific computational hemodynamics. Med Biol Eng Comput 46:1097–1112. doi:10.1007/s11517-008-0420-1

    Article  PubMed  Google Scholar 

  3. Antiga L, Steinman DA (2004) Robust and objective decomposition and mapping of bifurcating vessels. IEEE Trans Med Imaging 23(6):704–713. doi:10.1109/TMI.2004.826946

    Article  PubMed  Google Scholar 

  4. Canton G, Chiu B, Chen H, Chen Y, Hatsukami TS, Kerwin WS, Yuan C (2013) A framework for the co-registration of hemodynamic forces and atherosclerotic plaque components. Physiol Measur 34:977–990. doi:10.1088/0967-3334/34/9/977

    Article  Google Scholar 

  5. Chen Y, Canton G, Kerwin WS, Chiu B (2016) Modeling hemodynamic forces in carotid artery based on local geometric features. Med Biol Eng Comput 54:1437–1452. doi:10.1007/s11517-015-1417-1

    Article  PubMed  Google Scholar 

  6. Cheng J, Pike D, Chow TW, Kirby M, Parraga G, Chiu B (2016) Three-dimensional ultrasound measurements of carotid vessel wall and plaque thickness and their relationship with pulmonary abnormalities in ex-smokers without airflow limitation. Int J Cardiovasc Imaging 32(9):1391–1402

    Article  PubMed  Google Scholar 

  7. Chiu B, Beletsky V, Spence JD, Parraga G, Fenster A (2009) Analysis of carotid lumen surface morphology using three-dimensional ultrasound imaging. Phys Med Biol 54(5):1149–1167. doi:10.1088/0031-9155/54/5/004

    Article  PubMed  Google Scholar 

  8. Chiu B, Chen W, Cheng J (2016) Concise biomarker for spatial-temporal change in three-dimensional ultrasound measurement of carotid vessel wall and plaque thickness based on a graph-based random walk framework: towards sensitive evaluation of response to therapy. Comput Biol Med 79:149–162

    Article  PubMed  Google Scholar 

  9. Chiu B, Egger M, Spence JD, Parraga G, Fenster A (2008) Quantification of carotid vessel wall and plaque thickness change using 3D ultrasound images. Med Phys 35(8):3691–3710. doi:10.1118/1.2955550

    Article  PubMed  Google Scholar 

  10. Chiu B, Li B, Chow TWS (2013) Novel 3d ultrasound image-based biomarkers based on a feature selection from a 2d standardized vessel wall thickness map: a tool for sensitive assessment of therapies for carotid atherosclerosis. Phys Med Biol 58(17):5959–5982. doi:10.1088/0031-9155/58/17/5959

    Article  PubMed  Google Scholar 

  11. Chiu B, Ukwatta E, Shavakh S, Fenster A (2013) Quantification and visualization of carotid segmentation accuracy and precision using a 2D standardized carotid map. Phys Med Biol 58(11):3671–3703. doi:10.1088/0031-9155/58/11/3671

    Article  PubMed  Google Scholar 

  12. Choi GPT, Lui LM (2017) A linear formulation for disk conformal parameterization of simply-connected open surfaces. Adv Comput Math 1–28. doi:10.1007/s10444-017-9536-x

  13. Choi PT, Lam KC, Lui LM (2015) FLASH: fast landmark aligned spherical harmonic parameterization for genus-0 closed brain surfaces. SIAM J Imaging Sci 8(1):67–94. doi:10.1137/130950008

    Article  Google Scholar 

  14. Choi PT, Lui LM (2015) Fast disk conformal parameterization of simply-connected open surfaces. J Sci Comput 65(3):1065–1090

    Article  Google Scholar 

  15. Egger M, Chiu B, Spence JD, Fenster A, Parraga G (2008) Mapping spatial and temporal changes in carotid atherosclerosis from three-dimensional ultrasound images. Ultrasound Med Biol 34(1):64–72. doi:10.1016/j.ultrasmedbio.2007.07.004

    Article  PubMed  Google Scholar 

  16. Eicke BM, von Lorentz J, Paulus W (1995) Embolus detection in different degrees of carotid disease. Neurol Res 17(3):181–184

    Article  CAS  PubMed  Google Scholar 

  17. Fenster A, Downey DB (2000) Three-dimensional ultrasound imaging. Annu Rev Biomed Eng 2:457–475

    Article  CAS  PubMed  Google Scholar 

  18. Fenster A, Landry A, Downey DB, Hegele RA, Spence JD (2004) 3D ultrasound imaging of the carotid arteries. Curr Drug Targets Cardiovasc Haematol Disord 4(2):161–175

    Article  CAS  PubMed  Google Scholar 

  19. Filipovic N, Teng Z, Radovic M, Saveljic I, Fotiadis D, Parodi O (2013) Computer simulation of three-dimensional plaque formation and progression in the carotid artery. Med Biol Eng Comput 51(6):607–616. doi:10.1007/s11517-012-1031-4

    Article  PubMed  Google Scholar 

  20. Floater MS, Hormann K (2005) Surface parameterization: a tutorial and survey, pp. 157–186. Advances in multiresolution for geometric modelling. Springer-Verlag, Heidelberg

    Google Scholar 

  21. Haker S, Angenent S, Tannenbaum A, Kikinis R (2000) Nondistorting flattening maps and the 3-D visualization of colon CT images. IEEE Trans Med Imaging 19(7):665–670

    Article  CAS  PubMed  Google Scholar 

  22. He J, Gu D, Wu X, Reynolds K, Duan X, Yao C, Wang J, Chen CS, Chen J, Wildman RP, Klag MJ, Whelton PK (2005) Major causes of death among men and women in china. N Engl J Med 353(11):1124–1134. doi:10.1056/NEJMsa050467

    Article  CAS  PubMed  Google Scholar 

  23. Krasinski A, Chiu B, Fenster A, Parraga G (2009) Magnetic resonance imaging and three-dimensional ultrasound of carotid atherosclerosis: mapping regional differences. J Magn Reson Imaging 29 (4):901–908. doi:10.1002/jmri.21709

    Article  PubMed  Google Scholar 

  24. Krasinski A, Chiu B, Spence JD, Fenster A, Parraga G (2009) Three-dimensional ultrasound quantification of intensive statin treatment of carotid atherosclerosis. Ultrasound Med Biol 35(11):1763–1772. doi:10.1016/j.ultrasmedbio.2009.05.017

    Article  PubMed  Google Scholar 

  25. Kwon TG, Kim KW, Park HW, Jeong JH, Kim KY, Bae JH (2009) Prevalence and significance of carotid plaques in patients with coronary atherosclerosis. Korean Circ J 39:317–321. doi:10.4070/kcj.2009.39.8.317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Landry A, Spence JD, Fenster A (2004) Measurement of carotid plaque volume by 3-dimensional ultrasound. Stroke 35(4):864–869

    Article  PubMed  Google Scholar 

  27. Lee SW, Antiga L, Spence JD, Steinman DA (2008) Geometry of the carotid bifurcation predicts its exposure to disturbed flow. Stroke 39:2341–2347. doi:10.1161/STROKEAHA.107.510644

    Article  PubMed  Google Scholar 

  28. Liu L, Wang D, Wong KSL, Wang Y (2011) Stroke and stroke care in china: huge burden, significant workload, and a national priority. Stroke 42:3651–3654. doi:10.1161/STROKEAHA.111.635755

    Article  PubMed  Google Scholar 

  29. Liu M, Wu B, Wang WZ, Lee LM, Zhang SH, Kong LZ (2007) Stroke in china: epidemiology, prevention, and management strategies. Lancet Neurol 6(5):456–464. doi:10.1016/S1474-4422(07)70004-2

    Article  PubMed  Google Scholar 

  30. Lui LM, Lam KC, Wong TW, Gu X (2013) Texture map and video compression using Beltrami representation. SIAM J Imag Sci 6(4):1880–1902. doi:10.1137/120866129

    Article  Google Scholar 

  31. Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282(21):2035–2042

    Article  CAS  PubMed  Google Scholar 

  32. Meng TW, Choi GPT, Lui LM (2016) TEMPO: feature-endowed Teichmüller extremal mappings of point clouds. SIAM J Imaging Sci 9(4):1922–1962

    Article  Google Scholar 

  33. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler ER, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB (2014) Heart disease and stroke statistics - 2015 update. Circulation. doi:10.1161/CIR.0000000000000152

  34. Perktold K, Thurner E, Kenner T (1994) Flow and stress characteristics in rigid walled and compliant carotid artery bifurcation models. Medi Biol Eng Comput 32:19–26

    Article  CAS  Google Scholar 

  35. Spence JD (2007) Intensive management of risk factors for accelerated atherosclerosis: the role of multiple interventions. Curr Neurol Neurosci Rep 7(1):42–48. doi:10.1007/s11910-007-0020-8

    Article  CAS  PubMed  Google Scholar 

  36. Yang YL, Guo R, Luo F, Hu SM, Gu X (2009) Generalized discrete ricci flow. Comput Graph Forum 28(7):2005–2014. doi:10.1111/j.1467-8659.2009.01579.x

    Article  Google Scholar 

  37. Zeng W, Lui LM, Luo F, Chan TFC, Yau ST, Gu DX (2012) Computing quasiconformal maps using an auxiliary metric and discrete curvature flow. Numerische Mathematik 121(4):671–703. doi:10.1007/s00211-012-0446-z

    Article  Google Scholar 

  38. Zeng W, Marino J, Gurijala KC, Gu X, Kaufman A (2010) Supine and prone colon registration using quasi-conformal mapping. IEEE Trans Vis Comput Graph 16(6):1348–1357

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhu L, Haker S, Tannenbaum A (2005) Flattening maps for the visualization of multibranched vessels. IEEE Trans Med Imaging 24(2):191–198. doi:10.1109/TMI.2004.839368

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Dr. Chiu is grateful for funding support from the Research Grant Council of the HKSAR, China (Project No. CityU 139713), the National Natural Science Foundation of China (Grant No. 81201149), the Basic Research Free Exploration Program of the Science Technology and Innovation Committee of Shenzhen Municipality, China (Project No. JCYJ20160428155118212) and the City University of Hong Kong Strategic Research Grants (Nos. 7004425 and 7004617). The authors also acknowledge Dr. Aaron Fenster for providing the 3D ultrasound images and manually segmented contours for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Chiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, G.P.T., Chen, Y., Lui, L.M. et al. Conformal mapping of carotid vessel wall and plaque thickness measured from 3D ultrasound images. Med Biol Eng Comput 55, 2183–2195 (2017). https://doi.org/10.1007/s11517-017-1656-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1656-4

Keywords

Navigation