Skip to main content

Advertisement

Log in

Investigation of different classifiers and channel configurations of a mobile P300-based brain–computer interface

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Innovative methods and new technologies have significantly improved the quality of our daily life. However, disabled people, for example those that cannot use their arms and legs anymore, often cannot benefit from these developments, since they cannot use their hands to interact with traditional interaction methods (such as mouse or keyboard) to communicate with a computer system. A brain–computer interface (BCI) system allows such a disabled person to control an external device via brain waves. Past research mostly dealt with static interfaces, which limit users to a stationary location. However, since we are living in a world that is highly mobile, this paper evaluates a speller interface on a mobile phone used in a moving condition. The spelling experiments were conducted with 14 able-bodied subjects using visual flashes as the stimulus to spell 47 alphanumeric characters (38 letters and 9 numbers). This data was then used for the classification experiments. In par- ticular, two research directions are pursued. The first investigates the impact of different classification algorithms, and the second direction looks at the channel configuration, i.e., which channels are most beneficial in terms of achieving the highest classification accuracy. The evaluation results indicate that the Bayesian Linear Discriminant Analysis algorithm achieves the best accuracy. Also, the findings of the investigation on the channel configuration, which can potentially reduce the amount of data processing on a mobile device with limited computing capacity, is especially useful in mobile BCIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sutton S, Braren M, Zubin J, John ER (1965) Evoked-potential correlates of stimulus uncertainty. Science 150(3700):1187– 1188

    Article  CAS  PubMed  Google Scholar 

  2. Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70(6):510–523

    Article  CAS  PubMed  Google Scholar 

  3. Guger C, Daban S, Sellers E, Holzner C, Krausz G, Carabalona R (2009) How many people are able to control a P300-based brain-computer interface (BCI)? Neurosci Lett 462(1):94–98

    Article  CAS  PubMed  Google Scholar 

  4. Townsend G, LaPallo BK, Boulay CB, Krusienski DJ, Frye GE, Hauser CK (2010) A novel P300-based brain–computer interface stimulus presentation paradigm: moving beyond rows and columns. Clin Neurophysiol 121(7):1109–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fazel-Rezai R, Abhari K (2009) A region-based p300 speller for brain-computer interface. Can J Elect Comput E 34(3):81– 85

    Article  Google Scholar 

  6. Obeidat Q, Campbell T, Kong J (2013) The zigzag paradigm: a new P300-based brain computer interface. In: Proc. of the 15th ACM on ICMI. ACM, pp 205–212

  7. Lin CT, Chen YC, Huang TY, Chiu TT, Ko LW, Liang SF (2008) Development of wireless brain computer interface with embedded multitask scheduling and its application on real-time driver’s drowsiness detection and warning. IEEE T Bio-Med Eng 55(5):1582–1591

    Article  Google Scholar 

  8. Wang YT, Wang Y, Jung TP (2010) A cell-phone-based brain-computer interface for communication in daily life. J Neural Eng 8(2):025018, 1–5

    Google Scholar 

  9. De Vos M, Kroesen M, Emkes R, Debener S (2014) P300 speller BCI with a mobile EEG system: comparison to a traditional amplifier. J Neural Eng 11(3):036008, 1–8

    Google Scholar 

  10. Debener S, Emkes R, De Vos M, Bleichner M (2015) Unobtrusive ambulatory EEG using a smartphone and flexible printed electrodes around the ear. Sci Rep 5:16743, 1–11

    Article  Google Scholar 

  11. Debener S, Minow F, Emkes R, Gandras K, De Vos M (2012) How about taking a low-cost, small, and wireless EEG for a walk? Psychophysiology 49(11):1617–1621

    Article  PubMed  Google Scholar 

  12. De Vos M, Gandras K, Debener S (2014) Towards a truly mobile auditory brain–computer interface: exploring the p300 to take away. Int J Psychophysiol 91(1):46–53

    Article  PubMed  Google Scholar 

  13. Liao LD, Chen CY, Wang IJ, Chen SF, Li SY, Chen BW (2012) Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors. J Neuroeng Rehabil 9(1):1–11

    Article  Google Scholar 

  14. Gwin JT, Gramann K, Makeig S, Ferris DP (2010) Removal of movement artifact from high-density EEG recorded during walking and running. J Neurophysiol 103(6):3526–3534

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gramann K, Gwin JT, Bigdely-Shamlo N, Ferris DP, Makeig S (2010) Visual evoked responses during standing and walking. Neuroscience 4(202):1–12

    Google Scholar 

  16. Campbell A, Choudhury T, Hu S, Lu H, Mukerjee MK, Rabbi M (2010) Neurophone: brain-mobile phone interface using a wireless EEG headset. In: Proceedings of the second ACM SIGCOMM workshop on networking, systems, and applications on mobile handhelds. ACM, pp 3–8

  17. Obeidat Q, Campbell T, Kong J (2015) Introducing the edges paradigm: a P300 brain–computer interface for spelling written words. IEEE Trans Hum Mach Syst 45(6):727–738

    Article  Google Scholar 

  18. Obeidat Q (2014) Towards improving P300-based brain-computer interfaces: from desktop to mobile. PhD Dissertation, North Dakota State University

  19. Colwell KA, Ryan DB, Throckmorton CS, Sellers EW, Collins LM (2014) Channel selection methods for the P300 Speller. J Neurosci Methods 232:6–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lang M (2012) Investigating the Emotiv EPOC for cognitive control in limited training time. Honors Report, University of Canterbury

  21. EmotivSystem Emotiv: brain-computer interface technology. http://www.emotiv.com [Online; Accessed May 5 2016]

  22. Sharbrough F, Chatrian GE, Lesser RP, Luders H, Nuwer M, Picton TW (1991) American electroencephalographic society guidelines for standard electrode position nomenclature. J Clin Neurophysiol 8 (2):200–202

    Article  Google Scholar 

  23. Serby H, Yom-Tov E, Inbar GF (2005) An improved p300-based braincomputer interface. IEEE T Neur Sys Reh 13(1):89–98

    Article  Google Scholar 

  24. Hoffmann U, Vesin J-M, Ebrahimi T, Diserens K (2008) An efficient p300-based brain-computer interface for disabled subjects. J Neurosci Meth 167(1):115–125

    Article  Google Scholar 

  25. Lotte F, Congedo M, Lecuyer A, Lamarche F, Arnaldi B (2007) A review of classification algorithms for EEG-based brain-computer interfaces. J Neural Eng

  26. Krusienski DJ, Sellers EW, Cabestaing F (2006) A comparison of classification techniques for the P300 Speller. J Neural Eng 3(4):299–305

    Article  PubMed  Google Scholar 

  27. Panicker RC, Puthusserypady S, Sun Y (2010) Adaptation in p300 braincomputer interfaces: a two-classifier cotraining approach. IEEE Trans Biomed Eng 57(12):2927–2935

    Article  PubMed  Google Scholar 

  28. Mirghasemi H, Fazel-Rezai R, Shamsollahi MB (2006) Analysis of p300 classifiers in brain computer interface speller. In: Proceedings of the 28th annual international conference of the IEEE engineering in medicine and biology society (EMBS’06), pp 6205–6208

  29. Nijboer F, Sellers EW, Mellinger J (2008) A P300-based brain-computer interface for people with amyotrophic lateral sclerosis. Clin Neurophysiol 119(8):1909–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sellers EW, Donchin E (2006) A P300-based brain-computer interface: initial tests by ALS patients. Clin Neurophysiol 117(3):538–548

    Article  PubMed  Google Scholar 

  31. Hoffmann U, Vesin JM, Ebrahimi T, Diserens K (2008) An efficient P300-based brain-computer interface for disabled subjects. J Neurosci Methods 167(1):115–125

    Article  PubMed  Google Scholar 

  32. Thulasidas M, Guan C, Wu J (2006) Robust classification of EEG signal for brain-computer interface. IEEE Transa Neural Syst Rehab Eng 14(1):24–29

    Article  Google Scholar 

  33. Suykens J, Van Gestel T, De Brabanter J, De Moor B, Vanderwalle J (2002) Least square support vector machines. World Scientific, Singapore

    Book  Google Scholar 

  34. Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signals Syst 2 (4):303–314

    Article  Google Scholar 

  35. Palaniappan R (2005) Brain computer interface design using band powers extracted during mental tasks. In: Proceedings of the 2nd international IEEE EMBS conference on neural engineering (NER’05). Arlington

  36. del R Millan J, Mourino J, Franze M, Cincotti F, Varsta M, Heikkonen J, Babiloni F (2002) A local neural classifier for the recognition of EEG patterns associated to mental tasks. IEEE Trans Neural Netw

  37. Nakayaman K, Inagaki K (2006) A brain computer interface based on neural network with efficient pre-processing. In: Proceedings of the international symposium on intelligent signal processing and communications (ISPACS’06). Yonago

  38. Haselsteiner E, Pfurtscheller G (2000) Using time-dependent neural networks for EEG classification. IEEE Trans Rehabil Eng

  39. Millan JR, Mourino J (2003) Asynchronous BCI and local neural classifiers: an overview of the adaptive brain interface project. IEEE Trans Neural Syst Rehabil Eng

  40. Hornik K (1991) approximation capabilities of multilayer feedforward. Netw Neural Netw 4(2):251–257

    Article  Google Scholar 

  41. Bengio Y, LeCun Y (2007) Scaling learning algorithms towards AI, large-scale kernel machines. In: L Bottou, O Chapelle, D DeCoste, J Weston (eds). MIT Press

  42. Bengio Y, Delalleau O, Simard C (2010) Decision trees do not generalize to new variations. Comput Intell 26(4):449–467

    Article  Google Scholar 

  43. Freund Y, Schapire RE (1997) A Decision-Theoretic generalization of On-Line learning and an application to boosting. J Comput Syst Sci 55(1):119–139

    Article  Google Scholar 

  44. Schapire RE (1998) Boosting the margin: a new explanation for the effectiveness of voting methods. Ann Stat 26(5):1651– 1686

    Article  Google Scholar 

  45. Seiffert C, Khoshgoftaar T, Hulse J, Napolitano A (2008) RUSBOost: improving classification performance when training data is skewed. In: 19th International conference on pattern recognition

  46. Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting. Ann Stat 28(2):337–407

    Article  Google Scholar 

  47. Krusienski DJ, Sellers EW, McFarland DJ, Vaughan TM, Wolpaw JR (2008) Toward enhanced p300 speller performance? J Neurosci Methods 167(1):15–21

    Article  CAS  PubMed  Google Scholar 

  48. Schroeder M, Lal TN, Hinterberger T, Bogdan M, Hill NJ, Birbaumer N, Robust EEG (2005) Channel selection across subjects for brain–computer interfaces. EURASIP J Adv Signal Process 2005(19):3103–12

    Article  Google Scholar 

  49. Rakotomamonjy A, Guigue V (2008) BCI competition III: dataset II-ensemble of SVMs for BCI P300 speller. IEEE Trans Biomed Eng 55(3):1147–54

    Article  PubMed  Google Scholar 

  50. Cecotti H, Rivet B, Congedo M, Jutten C (2011) A robust sensor selection method for p300 brain–computer interfaces. J Neural Eng 8(1):1–21

    Article  Google Scholar 

  51. Lal TN, Schroeder M, Hinterberger T, Weston J, Bogdan M, Birbaumer N (2004) Support vector channel selection in BCI. IEEE Trans Biomed Eng 51(6):1003–10

    Article  PubMed  Google Scholar 

  52. Lan T, Erdogmus D, Adami A, Mathan S, Pavel M (2007) Channel selection and feature projection for cognitive load estimation using ambulatory EEG. Comput Intell Neurosci 2007:74895

    Article  PubMed Central  Google Scholar 

  53. Jin J, Allison BZ, Brunner C, Wang B, Wang X, Zhang J (2010) P300 Chinese input system based on Bayesian LDA. Biomed Tech (Berl) 55:5–18

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Qasem Obeidat for performing the spelling experiments on which this research study is based on.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone A. Ludwig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludwig, S.A., Kong, J. Investigation of different classifiers and channel configurations of a mobile P300-based brain–computer interface. Med Biol Eng Comput 55, 2143–2154 (2017). https://doi.org/10.1007/s11517-017-1658-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1658-2

Keywords

Navigation