Skip to main content
Log in

Occupational exposure to electromagnetic fields in magnetic resonance environment: basic aspects and review of exposure assessment approaches

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The purpose of this review is to make a contribution to build a comprehensive knowledge of the main aspects related to the occupational exposure to electromagnetic fields (EMFs) in magnetic resonance imaging (MRI) environments. Information has been obtained from original research papers published in international peer-reviewed journals in the English language and from documents published by governmental bodies and authorities. An overview of the occupational exposure scenarios to static magnetic fields, motion-induced, time-varying magnetic fields, and gradient and radiofrequency fields is provided, together with a summary of the relevant regulation for limiting exposure. A particular emphasis is on reviewing the main EMF exposure assessment approaches found in the literature. Exposure assessment is carried out either by measuring the unperturbed magnetic fields in the MRI rooms, or by personal monitoring campaigns, or by the use of numerical methods. A general lack of standardization of the procedures and technologies adopted for exposure assessment has emerged, which makes it difficult to perform a direct comparison of results from different studies carried out by applying different assessment strategies. In conclusion, exposure assessment approaches based on data collection and numerical models need to be better defined in order to respond to specific research questions. That would provide for a more complete characterization of the exposure patterns and for identification of the factors determining the exposure variability.

Main approaches adopted in the literature to perform occupational exposure assessment to electromagnetic fields (EMFs) in magnetic resonance imaging (MRI) environments. SMF: static magnetic field; GMF: gradient magnetic fields; RF: radio-frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Moser E, Stahlberg F, Ladd ME, Trattnig S (2012) 7-T MR-from research to clinical applications? NMR Biomed 25(5):695–716. https://doi.org/10.1002/nbm.1794

    Article  PubMed  Google Scholar 

  2. McRobbie DW (2012) Occupational exposure in MRI. Br J Radiol 85(1012):293–312. https://doi.org/10.1259/bjr/30146162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lauterbur PC (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242(5394):190–191. https://doi.org/10.1038/242190a0

    Article  CAS  Google Scholar 

  4. Mansfield P (1977) Multi-planar image formation using NMR spin echoes. J Phys C Solid State Phys 10:55–58

    Article  Google Scholar 

  5. Betta G, Capriglione D, Pasquino N (2012) Experimental investigation on workers ’ exposure to electromagnetic fields in proximity of magnetic resonance imaging systems. Measurement 45(2):199–206. https://doi.org/10.1016/j.measurement.2011.03.001

    Article  Google Scholar 

  6. Bradley JK, Nyekiova M, Price DL, Lopez LD, Crawley T (2007) Occupational exposure to static and time-varying gradient magnetic fields in MR units. J Magn Reson Imaging 26(5):1204–1209. https://doi.org/10.1002/jmri.21152

    Article  PubMed  Google Scholar 

  7. McRobbie DW, Moore EA, Graves MJ, Prince MR (2006) MRI from picture to proton. Cambridge University Press, New York

  8. Edelstein WA, Hutchison JM, Smith FW et al (1981) Human whole-body NMR tomographic imaging: normal sections. Br J Radiol 54(638):149–151. https://doi.org/10.1259/0007-1285-54-638-149

    Article  CAS  PubMed  Google Scholar 

  9. Schaap K, Christopher-De Vries Y, Slottje P, Kromhout H (2013) Inventory of MRI applications and workers exposed to MRI-related electromagnetic fields in the Netherlands. Eur J Radiol 82(12):2279–2285. https://doi.org/10.1016/j.ejrad.2013.07.023

    Article  PubMed  Google Scholar 

  10. Shellock FG, Crues JV (2004) MR Procedures: biologic effects, safety, and patient. Radiology 232(3):635–652. https://doi.org/10.1148/radiol.2323030830

    Article  PubMed  Google Scholar 

  11. Shellock FG, Crues JV (2014) MRI bioeffects, safety, and patient management. Biomedical Research Publishing Group, Los Angels

    Google Scholar 

  12. Kim SJ, Kim KA (2017) Safety issues and updates under MR environments. Eur J Radiol 89:7–13. https://doi.org/10.1016/j.ejrad.2017.01.010

    Article  PubMed  Google Scholar 

  13. Crook N, Robinson L (2009) A review of the safety implications of magnetic resonance imaging at field strengths of 3Tesla and above. Radiography 15(4):351–356. https://doi.org/10.1016/j.radi.2009.07.004

    Article  Google Scholar 

  14. Stikova E (2012) Magnetic resonance imaging safety: principles and guidelines. Prilozi 33(1):441–472

    CAS  PubMed  Google Scholar 

  15. Kangarlu A, Robitaille PL (2000) Biological effects and health implications in magnetic resonance imaging. Concepts Magn Reson 12(5):321–359.

    Article  Google Scholar 

  16. Durbridge G (2011) Magnetic resonance imaging: fundamental safety issues. J Orthop Sport Phys Ther 41:820–828

    Article  Google Scholar 

  17. Shigemitsu T, Ueno S (2017) Biological and health effects of electromagnetic fields related to the operation of MRI/TMS. Spine 7:1740009. https://doi.org/10.1142/S2010324717400094

    Article  Google Scholar 

  18. Shellock FG (2014) Reference manual for magnetic resonance safety, implants, and devices: 2014 edition. Biomedical Research Publishing Group, Playa Del Rey

  19. Kugel H (2012) Safety considerations in interventional MRI. In: Kahn T, Busse H (eds) Interv. Magn. Reson. Imaging. Springer, Berlin, pp 77–88. https://doi.org/10.1007/174_2012_570

    Chapter  Google Scholar 

  20. Woods TO (2007) Standards for medical devices in MRI: present and future. J Magn Reson Imaging 26(5):1186–1189. https://doi.org/10.1002/jmri.21140

    Article  PubMed  Google Scholar 

  21. Alorainy IA, Albadr FB, Abujamea AH (2006) Attitude towards MRI safety during pregnancy. Ann Saudi Med 26(4):306–309. https://doi.org/10.5144/0256-4947.2006.306

    Article  PubMed  Google Scholar 

  22. De Wilde JP, Rivers AW, Price DL (2005) A review of the current use of magnetic resonance imaging in pregnancy and safety implications for the fetus. Prog Biophys Mol Biol 87(2-3):335–353. https://doi.org/10.1016/j.pbiomolbio.2004.08.010

    Article  PubMed  Google Scholar 

  23. Eskandar O, Eckford S, Watkinson T (2010) Safety of diagnostic imaging in pregnancy. Part 2: magnetic resonance imaging, ultrasound scanning and Doppler assessment. Obstet Gynaecol 12(3):171–177. https://doi.org/10.1576/toag.12.3.171.27599

    Google Scholar 

  24. Patenaude Y, Pugash D, Lim K, Morin L, Diagnostic Imaging Committee, Lim K, Bly S, Butt K, Cargill Y, Davies G, Denis N, Hazlitt G, Morin L, Naud K, Ouellet A, Salem S, Society of Obstetricians and Gynaecologists of Canada (2014) The use of magnetic resonance imaging in the obstetric patient. J Obstet Gynaecol Can 36(4):349–363. https://doi.org/10.1016/S1701-2163(15)30612-5

    Article  PubMed  Google Scholar 

  25. Pamboucas CA, Rokas SG (2008) Clinical safety of cardiovascular magnetic resonance: cardiovascular devices and contrast agents. Hell J Cardiol 49:352–356

    Google Scholar 

  26. Shellock FG, Kanal E (1999) Safety of magnetic resonance imaging contrast agents. J Magn Reson Imaging 10(3):477–484.

    Article  CAS  PubMed  Google Scholar 

  27. Hartwig V, Giovannetti G, Vanello N, Lombardi M, Landini L, Simi S (2009) Biological effects and safety in magnetic resonance imaging: a review. Int J Env Res Public Health 6(6):1778–1798. https://doi.org/10.3390/ijerph6061778

    Article  Google Scholar 

  28. Vijayalaxmi, Fatahi M, Speck O (2015) Magnetic resonance imaging (MRI): a review of genetic damage investigations. Mutat Res Rev Mutat Res 764:51–63. https://doi.org/10.1016/j.mrrev.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  29. Ghodbane S, Lahbib A, Sakly M, Abdelmelek H (2013) Bioeffects of static magnetic Fields : oxidative stress, genotoxic effects, and cancer studies. Biomed Res Int 2013:1–12. https://doi.org/10.1155/2013/602987

    Article  Google Scholar 

  30. SCENIHR (2015) Potential health effects of exposure to electromagnetic fields (EMF). https://doi.org/10.2772/75635

  31. ICNIRP (2009) Guidelines on limits of exposure to static magnetic fields. Health Phys 96(4):504–514. https://doi.org/10.1097/01.HP.0000343164.27920.4a

    Article  Google Scholar 

  32. ICNIRP (2010) Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). Health Phys 99:818–836. https://doi.org/10.1097/HP.0b013e3181f06c86

    Google Scholar 

  33. EU (2013) Directive 2013/35/EU of the European Parliament And Of The Council of 26 June 2013 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields)

  34. De Vocht F, Batistatou E, Mölter A et al (2015) Transient health symptoms of MRI staff working with 1.5 and 3.0 Tesla scanners in the UK. Eur Radiol 25(9):2718–2726. https://doi.org/10.1007/s00330-015-3629-z

    Article  PubMed  Google Scholar 

  35. Schaap K, Christopher-de Vries Y, Mason CK, de Vocht F, Portengen L, Kromhout H (2014) Occupational exposure of healthcare and research staff to static magnetic stray fields from 1.5-7 Tesla MRI scanners is associated with reporting of transient symptoms. Occup Environ Med 71(6):423–429. https://doi.org/10.1136/oemed-2013-101890

    Article  PubMed  PubMed Central  Google Scholar 

  36. Schaap K, Christopher-De Vries Y, Cambron-Goulet É, Kromhout H (2016) Work-related factors associated with occupational exposure to static magnetic stray fields from MRI scanners. Magn Reson Med 75(5):2141–2155. https://doi.org/10.1002/mrm.25720

    Article  CAS  PubMed  Google Scholar 

  37. Schaap K, Portengen L, Kromhout H (2016) Exposure to MRI-related magnetic fields and vertigo in MRI workers. Occup Environ Med 73(3):161–166. https://doi.org/10.1136/oemed-2015-103019

    Article  PubMed  Google Scholar 

  38. Sammet S (2016) Magnetic resonance safety. Abdom Radiol 41(3):444–451. https://doi.org/10.1007/s00261-016-0680-4

    Article  Google Scholar 

  39. Karpowicz J, Gryz K (2006) Health risk assessment of occupational exposure to a magnetic field from magnetic resonance imaging devices. Int J Occup Saf Ergon 12(2):155–167. https://doi.org/10.1080/10803548.2006.11076679

    Article  PubMed  Google Scholar 

  40. Kanal E, Barkovich AJ, Bell C et al (2013) ACR guidance document on MR safe practices: 2013. J Magn Reson Imaging 37(3):501–530. https://doi.org/10.1002/jmri.24011

    Article  PubMed  Google Scholar 

  41. Gyekye SA (2005) Workers’ perceptions of workplace safety and job satisfaction. Int J Occup Saf Ergon 11(3):291–302. https://doi.org/10.1080/10803548.2005.11076650

    Article  PubMed  Google Scholar 

  42. ICNIRP (1994) Guidelines on limits of exposure to static magnetic fields. Health Phys 66(4):100–106. https://doi.org/10.1097/01.HP.0000343164.27920.4a

    Google Scholar 

  43. ICNIRP (1998) Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys 74(3):494–522. https://doi.org/10.1097/HP.0b013e3181aff9db

    Google Scholar 

  44. EU (2004) Directive 2004/40/EC of the European Parliament and of the Council of 29April 2004 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields).Official Journal of the Eu

  45. Hill DLG, McLeish K, Keevil SF (2005) Impact of electromagnetic field exposure limits in Europe: is the future of interventional MRI safe? Acad Radiol 12(9):1135–1142. https://doi.org/10.1016/j.acra.2005.05.023

    Article  PubMed  Google Scholar 

  46. Keevil SF (2006) Impact of the physical agents (EMF) directive on medical magnetic resonance imaging. IET Semin. Phys. Agents Dir, London, pp 47–56

    Google Scholar 

  47. Moore EA, Scurr ED (2007) British association of MR radiographers (BAMRR) safety survey 2005: potential impact of European union (EU) physical agents directive (PAD) on electromagnetic fields (EMF). J Magn Reson Imaging 26(5):1303–1307. https://doi.org/10.1002/jmri.21154

    Article  PubMed  Google Scholar 

  48. Young I, McRobbie DW, Keevil SF, Taylor A (2006) Unintended consequences of an unwarrantedly cautious approach to safety. Br J Hosp Med 67(4):174–175. https://doi.org/10.12968/hmed.2006.67.4.20860

    Article  Google Scholar 

  49. EU (2015) Non-binding guide to good practice for implementing Directive 2013/35/EU Volume 2: Case Studies

  50. EU (2015) Non-binding guide to good practice for implementing Directive 2013/35/EU Electromagnetic Fields Volume 1: Practical Guide

  51. ICNIRP (2014) Guidelines for limiting exposure to electric fields induced by and by time-varying magnetic fields below 1 Hz. Health Phys 106(3):418–425. https://doi.org/10.1097/HP.0b013e31829e5580

    Article  Google Scholar 

  52. U.S. Food and Drug Administration C (2014) Criteria for Significant Risk Investigations of Magnetic Resonance Diagnostic Devices Guidance for Industry and Food and Drug Administration Staff

  53. IEEE (2002) Standard for safety levels with respect to human exposure to electromagnetic fields, 0–3 kHz

  54. IEEE (2006) Standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz

  55. International Electrotechnical Commision (2010) IEC 60601-2-33:2010 Medical electrical equipment—part 2–33: particular requirements for the safety of magnetic resonance equipment for medical diagnosis

  56. IARC (2002) Sources, exposure and exposure assessment. IARC Monogr Eval Carcinog Risks Hum 80:51–93

    Google Scholar 

  57. Hand JW (2008) Modelling the interaction of electromagnetic fields (10 MHz – 10 GHz) with the human body: methods and applications. Phys Med Biol 53(16):R243–R246. https://doi.org/10.1088/0031-9155/53/16/R01

    Article  CAS  PubMed  Google Scholar 

  58. Karpowicz J, Hietanen M, Gryz K (2007) Occupational risk from static magnetic fields of MRI scanners. Environmentalist 27(4):533–538. https://doi.org/10.1007/s10669-007-9064-1

    Article  Google Scholar 

  59. Bongers S, Christopher Y, Engels H et al (2013) Retrospective assessment of exposure to static magnetic fields during production and development of magnetic resonance imaging systems. Ann Occup Hyg 58:85–102. https://doi.org/10.1093/annhyg/met049

    PubMed  Google Scholar 

  60. Úbeda A, Martínez MA, Cid MA, Chacón L, Trillo MA, Leal J (2011) Assessment of occupational exposure to extremely low frequency magnetic fields in hospital personnel. Bioelectromagnetics 32(5):378–387. https://doi.org/10.1002/bem.20644

    Article  PubMed  Google Scholar 

  61. Andreuccetti D, Contessa GM, Falsaperla R, Lodato R, Pinto R, Zoppetti N, Rossi P (2013) Weighted-peak assessment of occupational exposure due to MRI gradient fields and movements in a nonhomogeneous static magnetic field. Med Phys 40(1):11910. https://doi.org/10.1118/1.4771933

    Article  CAS  Google Scholar 

  62. Gourzoulidis G, Karabetsos E, Skamnakis N et al (2015) Occupational electromagnetic fields exposure in magnetic resonance imaging systems—preliminary results for the RF harmonic content. Phys Med 31(7):757–762. https://doi.org/10.1016/j.ejmp.2015.03.006

    Article  CAS  PubMed  Google Scholar 

  63. Bonutti F, Tecchio M, Maieron M, Trevisan D, Negro C, Calligaris F (2016) Measurement of the weighted peak level for occupational exposure to gradient magnetic fields for 1.5 and 3 Tesla MRI body scanners. Radiat Prot Dosim 168:358–364. https://doi.org/10.1093/rpd/ncv308

    CAS  Google Scholar 

  64. Riches SF, Collins DJ, Scuffham JW, Leach MO (2007) EU Directive 2004/40: field measurements of a 1.5 T clinical MR scanner. Br J Radiol 80(954):483–487. https://doi.org/10.1259/bjr/69843752

    Article  CAS  PubMed  Google Scholar 

  65. Stralka JP, Bottomley PA (2007) A prototype RF dosimeter for independent measurement of the average specific absorption rate (SAR) during MRI. J Magn Reson 26(5):1296–1302. https://doi.org/10.1002/jmri.21141.A

    Article  Google Scholar 

  66. Fatahi M, Karpowicz J, Gryz K, Fattahi A, Rose G, Speck O (2017) Evaluation of exposure to (ultra) high static magnetic fields during activities around human MRI scanners. MAGMA 30(3):255–264. https://doi.org/10.1007/s10334-016-0602-z

    Article  PubMed  Google Scholar 

  67. Crozier S, Wilson SJ, Gregg I (2011) US7936168B2 magnetic field dosimeter

  68. Fuentes MA, Trakic A, Wilson SJ, Crozier S (2008) Analysis and measurements of magnetic field exposures for healthcare workers in selected MR environments. IEEE Trans Biomed Eng 55(4):1355–1364. https://doi.org/10.1109/TBME.2007.913410

    Article  PubMed  Google Scholar 

  69. Schaap K, Christopher-De Vries Y, Crozier S et al (2014) Exposure to static and time-varying magnetic fields from working in the static magnetic stray fields of MRI scanners: a comprehensive survey in the Netherlands. Ann Occup Hyg 58:1094–1110. https://doi.org/10.1093/annhyg/meu057

    PubMed  Google Scholar 

  70. Batistatou E, Molter A, Kromhout H et al (2016) Personal exposure to static and time-varying magnetic fields during MRI procedures in clinical practice in the UK. Occup Environ Med 73:779–786. https://doi.org/10.1136/oemed-2015-103194

    PubMed  Google Scholar 

  71. De Vocht F, Muller F, Engels H, Kromhout H (2009) Personal exposure to static and time-varying magnetic fields during MRI system test procedures. J Magn Reson Imaging 30(5):1223–1228. https://doi.org/10.1002/jmri.21952

    Article  PubMed  Google Scholar 

  72. Kännälä S, Toivo T, Alanko T, Jokela K (2009) Occupational exposure measurements of static and pulsed gradient magnetic fields in the vicinity of MRI scanners. Phys Med Biol 54(7):2243–2257. https://doi.org/10.1088/0031-9155/54/7/026

    Article  PubMed  Google Scholar 

  73. Groebner J, Umathum R, Bock M, Krafft AJ, Semmler W, Rauschenberg J (2011) MR safety: simultaneous B0, df/dt, and dB/dt measurements on MR-workers up to 7T. MAGMA 24(6):315–322. https://doi.org/10.1007/s10334-011-0270-y

    Article  PubMed  Google Scholar 

  74. Glover PM, Bowtell R (2008) Measurement of electric fields induced in a human subject due to natural movements in static magnetic fields or exposure to alternating magnetic field gradients. Phys Med Biol 53(2):361–373. https://doi.org/10.1088/0031-9155/53/2/005

    Article  CAS  PubMed  Google Scholar 

  75. Acri G, Testagrossa B, Causa F, Tripepi MG, Vermiglio G, Novario R, Pozzi L, Quadrelli G (2014) Evaluation of occupational exposure in magnetic resonance sites. Radiol Med 119(3):208–213. https://doi.org/10.1007/s11547-013-0324-5

    Article  PubMed  Google Scholar 

  76. De Vocht F, Van Drooge H, Engels H, Kromhout H (2006) Exposure, health complaints and cognitive performance among employees of an MRI scanners manufacturing department. J Magn Reson Imaging 23(2):197–204. https://doi.org/10.1002/jmri.20485

    Article  PubMed  Google Scholar 

  77. Crozier S, Trakic A, Wang H, Liu F (2007) Numerical study of currents in workers induced by body-motion around high-ultrahigh field MRI magnets. J Magn Reson Imaging 26(5):1261–1277. https://doi.org/10.1002/jmri.21160

    Article  Google Scholar 

  78. Chiampi M, Zilberti L (2011) Induction of electric field in human bodies moving near MRI: an efficient BEM computational procedure. IEEE Trans Biomed Eng 58(10):2787–2793. https://doi.org/10.1109/TBME.2011.2158315

    Article  CAS  PubMed  Google Scholar 

  79. Wang H, Trakic A, Liu F, Crozier S (2008) Numerical field evaluation of healthcare workers when bending towards high-field MRI magnets. Magn Reson Med 59(2):410–422. https://doi.org/10.1002/mrm.21441

    Article  CAS  PubMed  Google Scholar 

  80. Cobos Sánchez C, Glover P, Power H, Bowtell R (2012) Calculation of the electric field resulting from human body rotation in a magnetic field. Phys Med Biol 57(15):4739–4753. https://doi.org/10.1088/0031-9155/57/15/4739

    Article  PubMed  Google Scholar 

  81. Laakso I, Kännälä S, Jokela K (2013) Computational dosimetry of induced electric fields during realistic movements in the vicinity of a 3 T MRI scanner. Phys Med Biol 58(8):2625–2640. https://doi.org/10.1088/0031-9155/58/8/2625

    Article  PubMed  Google Scholar 

  82. Zilberti L, Bottauscio O, Chiampi M (2015) Biomagnetics motion-induced fields in magnetic resonance imaging : are the dielectric currents really negligible? IEEEE Magn Lett 6:1–4. https://doi.org/10.1109/LMAG.2015.2429641

    Article  Google Scholar 

  83. Zilberti L, Bottauscio O, Chiampi M (2016) Assessment of exposure to MRI motion-induced fields based on the international commission on non-ionizing radiation protection (ICNIRP) guidelines. Magn Reson Med 76(4):1291–1300. https://doi.org/10.1002/mrm.26031

    Article  CAS  PubMed  Google Scholar 

  84. Zradziński P (2015) Difficulties in applying numerical simulations to an evaluation of occupational hazards caused by electromagnetic fields. Int J Occup Saf Ergon 21(2):213–220. https://doi.org/10.1080/10803548.2015.1028233

    Article  PubMed  PubMed Central  Google Scholar 

  85. Crozier S, Wang H, Trakic A, Liu F (2007) Exposure of workers to pulsed gradients in MRI. J Magn Reson Imaging 26(5):1236–1254. https://doi.org/10.1002/jmri.21162

    Article  PubMed  Google Scholar 

  86. Li Y, Hand JW, Wills T, Hajnal JV (2007) Numerically-simulated induced electric field and current density within a human model located close to a z-gradient coil. J Magn Reson Imaging 26(5):1286–1295. https://doi.org/10.1002/jmri.21137

    Article  PubMed  Google Scholar 

  87. Li Y, Hand J, Christ A, et al (2009) Modeling occupational exposure to RF and gradient fields associated with an interventional procedure in an open 1 T MR system. Proc 17th Sci Meet Int Soc Magn Reson Med Honolulu 3042

  88. Hartwig V, Vanello N, Giovannetti G, Lombardi M, Landini L, Santarelli MF (2011) A novel tool for estimation of magnetic resonance occupational exposure to spatially varying magnetic fields. MAGMA 24(6):323–330. https://doi.org/10.1007/s10334-011-0279-2

    Article  PubMed  Google Scholar 

  89. Hartwig V, Vanello N, Giovannetti G, Landini L, Santarelli MF (2014) Estimation of occupational exposure to static magnetic fields due to usual movements in magnetic resonance units. Concepts Magn Reson Part B Magn Reson Eng 44(3):75–81. https://doi.org/10.1002/cmr.b.21270

    Article  Google Scholar 

  90. Farrag SI (2015) Numerical simulation of the induced currents in occupational workers induced by body-motion around different MRI fields. Int J Adv Res Comput Sci Softw Eng 5:66–71

    Google Scholar 

  91. Farrag SI (2014) Numerical computation of specific absorption rate and induced current for workers exposed to static magnetic fields of MRI scanners. I.E. Conference on Biomedical Engineering and Sciences (IECBES):612–617

  92. Yamaguchi-Sekino S, Nakai T, Imai S, Izawa S, Okuno T (2014) Occupational exposure levels of static magnetic field during routine MRI examination in 3T MR system. Bioelectromagnetics 35(1):70–75. https://doi.org/10.1002/bem.21817

    Article  PubMed  Google Scholar 

  93. Acri G, Testagrossa B, Vermiglio G (2015) Personal time-varying magnetic fields evaluation during activities in MRI sites. IFMBE Proc 51:741–744. https://doi.org/10.1007/978-3-319-19387-8_182

    Article  Google Scholar 

  94. Koeman T, Slottje P, Kromhout H, Schouten LJ, Goldbohm RA, van den Brandt PA, Vermeulen R (2013) Occupational exposure to extremely low-frequency magnetic fields and cardiovascular disease mortality in a prospective cohort study. Occup Environ Med 70(6):402–407. https://doi.org/10.1136/oemed-2012-100889

    Article  PubMed  Google Scholar 

  95. Zilberti L, Bottauscio O, Chiampi M (2016) A potential-based formulation for motion-induced electric fields in MRI. IEEE Trans Magn 52(3):1–4. https://doi.org/10.1109/TMAG.2015.2474748

    Article  Google Scholar 

  96. Karpowicz J, Gryz K (2013) The pattern of exposure to static magnetic field of nurses involved in activities related to contrast administration into patients diagnosed in 1.5 T MRI scanners. Electromagn Biol Med 32(2):182–191. https://doi.org/10.3109/15368378.2013.776428

    Article  PubMed  Google Scholar 

  97. Kabil J, Belguerras L, Trattnig S, Pasquier C, Felblinger J, Missoffe A (2016) A review of numerical simulation and analytical modeling for medical devices safety in MRI. Yearb Med Inform 10(1):152–158. https://doi.org/10.15265/IY-2016-016

    Article  Google Scholar 

  98. Bottauscio O, Cassarà a M, Hand JW et al (2015) Assessment of computational tools for MRI RF dosimetry by comparison with measurements on a laboratory phantom. Phys Med Biol 60(14):5655–5680. https://doi.org/10.1088/0031-9155/60/14/5655

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. Mats-Olof Mattsson, (Austrian Institute of Technology, Tulln, Austria) for proof-reading the paper and for the useful comments and suggestions provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Hartwig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartwig, V., Romeo, S. & Zeni, O. Occupational exposure to electromagnetic fields in magnetic resonance environment: basic aspects and review of exposure assessment approaches. Med Biol Eng Comput 56, 531–545 (2018). https://doi.org/10.1007/s11517-017-1779-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1779-7

Keywords

Navigation