Skip to main content
Log in

Vibroarthrography for early detection of knee osteoarthritis using normalized frequency features

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Vibroarthrography is a radiation-free and inexpensive method of assessing the condition of knee cartilage damage during extension-flexion movements. Acoustic sensors were placed on the patella and medial tibial plateau (two accelerometers) as well as on the lateral tibial plateau (a piezoelectric disk) to measure the structure-borne noise in 59 asymptomatic knees and 40 knees with osteoarthritis. After semi-automatic segmentation of the acoustic signals, frequency features were generated for the extension as well as the flexion phase. We propose simple and robust features based on relative high-frequency components. The normalized nature of these frequency features makes them insusceptible to influences on the signal gain, such as attenuation by fat tissue and variance in acoustic coupling. We analyzed their ability to serve as classification features for detection of knee osteoarthritis, including the effect of normalization and the effect of combining frequency features of all three sensors. The features permitted a distinction between asymptomatic and non-healthy knees. Using machine learning with a linear support vector machine, a classification specificity of approximately 0.8 at a sensitivity of 0.75 could be achieved. This classification performance is comparable to existing diagnostic tests and hence qualifies vibroarthrography as an additional diagnostic tool.

Acoustic frequency features were used to detect knee osteoarthritis at 80% specificity and 75% sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Andersen RE, Arendt-Nielsen L, Madeleine P (2016) A review of engineering aspects of vibroarthography of the knee joint. Critical Reviews in Physical and Rehabilitation Medicine 28(1–2):13– 32

  2. Ben-Dor A, Bruhn L, Friedman N, Nachman I, Schummer M, Yakhini Z (2000) Tissue classification with gene expression profiles. J Comput Biol 7(3-4):559–583

    Article  PubMed  CAS  Google Scholar 

  3. Beverland D, Kernohan G, McCoy G, Mollan R (1985) What is physiological patellofemoral crepitus? Med Biol Eng Comput 23(2):1249–1250

    Google Scholar 

  4. Bircher E (1913) Zur diagnose der meniscusluxation und des meniscusabrisses. Zentralbl f Chir 40:1852–1857

    Google Scholar 

  5. Blodgett WE (1902) Auscultation of the knee joint. The Boston Medical and Surgical Journal 146(3):63–66

    Article  Google Scholar 

  6. Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. Proceedings of the fifth annual workshop on Computational learning theory COLT 92 6(8):144–152

    Article  Google Scholar 

  7. Brooks S, Morgan M (2002) Accuracy of clinical diagnosis in knee arthroscopy. Ann R Coll Surg Engl 84 (4):265–8

    Article  PubMed  PubMed Central  Google Scholar 

  8. Buckwalter JA, Mankin HJ (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47:487–504

    PubMed  CAS  Google Scholar 

  9. Carl H (1885) Grundriss der chirurgie, 3rd edn. FCW Vogel , Leipzig

    Google Scholar 

  10. Chang CC, Lin CJ (2011) LIBSVM: A library for support vector machines. ACM Trans Intell Syst Technol 2:27:1–27:27. software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

    Article  Google Scholar 

  11. Cherkassky V, Ma Y (2004) Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw 17(1):113–126

    Article  PubMed  Google Scholar 

  12. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    Google Scholar 

  13. Dawson J, Fitzpatrick R, Murray D, Carr A (1998) Questionnaire on the perceptions of patients about total knee replacement. J Bone Joint Surg (Br) 80(1):63–9

    Article  CAS  Google Scholar 

  14. Dunbar M, Robertsson O, Ryd L, Lidgren L (2001) Appropriate questionnaires for knee arthroplasty. Bone & Joint Journal 83(3):339–344x

    CAS  Google Scholar 

  15. Erb KH (1933) ÜBer die möglichkeit der registrierung von gelenkgeräuschen. Deutsche Zeitschrift fü,r Chirurgie 241(11): 237–245

    Article  Google Scholar 

  16. Fischer H, Johnson E (1961) Analysis of sounds from normal and pathologic knee joints. Arch Phys Med Rehabil 42:233

    PubMed  CAS  Google Scholar 

  17. Frank CB, Rangayyan RM, Bell GD (1990) Analysis of knee joint sound signals for non-invasive diagnosis of cartilage pathology. IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society 9(1):65–8

    Article  CAS  Google Scholar 

  18. Guermazi A, Roemer FW, Hayashi D (2011) Imaging of osteoarthritis: update from a radiological perspective. Curr Opin Rheumatol 23(5):484–91

    Article  PubMed  Google Scholar 

  19. Hsu CW, Chang CC, Lin CJ (2010) A practical guide to support vector classification. Bioinformatics 1 (1):1–16

    Google Scholar 

  20. Hudelmaier M, Glaser C, Hohe J, Englmeier KH, Reiser M, Putz R, Eckstein F (2001) Age-related changes in the morphology and deformational behavior of knee joint cartilage. Arthritis Rheum 44(11):2556–61

    Article  PubMed  CAS  Google Scholar 

  21. Jackson DW, Simon TM, Aberman HM (2001) Symptomatic articular cartilage degeneration: the impact in the new millennium. Clin Orthop Relat Res 391:S14–S25

  22. Jackson RW, Abe I (1972) The role of arthroscopy in the management of disorders of the knee. An analysis of 200 consecutive examinations. The. J Bone Joint Surg (Br) 54(2):310–22

    Article  CAS  Google Scholar 

  23. Jiang CC, Liu YJ, Yip KM, Wu E (1993) Physiological patellofemoral crepitus in knee joint disorders. Bull Hosp Jt Dis (New York, N.Y.) 53(4):22–6

    Google Scholar 

  24. Kim KS, Seo JH, Kang JU, Song CG (2009) An enhanced algorithm for knee joint sound classification using feature extraction based on time-frequency analysis. Comput Methods Prog Biomed 94(2):198–206

    Article  Google Scholar 

  25. King G, Zeng L (2001) Logistic regression in rare events data. Polit Anal 9(2):137–163

    Article  Google Scholar 

  26. Krishnan S, Rangayyan RM, Bell GD, Frank CB (2000) Adaptive time-frequency analysis of knee joint vibroarthrographic signals for noninvasive screening of articular cartilage pathology. IEEE Trans Biomed Eng 47 (6):773–83

    Article  PubMed  CAS  Google Scholar 

  27. Krishnan S, Rangayyan RM, Bell GD, Frank CB (2001) Auditory display of knee-joint vibration signals. J Acoust Soc Am 110(6):3292–304

    Article  PubMed  CAS  Google Scholar 

  28. Lee TF, Lin WC, Wu LF, Wang HY (2012) Analysis of vibroarthrographic signals for knee osteoarthritis diagnosis. In: Proceedings - 2012 6th international conference on genetic and evolutionary computing, ICGEC 2012, pp 223–228

  29. Lin HT, Lin CJ, Weng RC (2007) A note on Platt’s probabilistic outputs for support vector machines. Mach Learn 68(3):267–276

    Article  Google Scholar 

  30. McCauley TR, Kier R, Lynch KJ, Jokl P (1992) Chondromalacia patellae: diagnosis with MR imaging. Am J Roentgenol 158(1):101–105

    Article  CAS  Google Scholar 

  31. McCoy GF, McCrea JD, Beverland DE, Kernohan WG, Mollan RA (1987) Vibration arthrography as a diagnostic aid in diseases of the knee. A preliminary report. J Bone Joint Surg (Br) 69(2):288–93

    Article  CAS  Google Scholar 

  32. Menashe L, Hirko K, Losina E, Kloppenburg M, Zhang W, Li L, Hunter DJ (2012) The diagnostic performance of MRI in osteoarthritis: a systematic review and meta-analysis. Osteoarthritis and cartilage / OARS. Osteoarthritis Research Society 20(1):13–21

    Article  CAS  Google Scholar 

  33. Moussavi ZM, Rangayyan RM, Bell GD, Frank CB, Ladly KO, Zhang YT (1996) Screening of vibroarthrographic signals via adaptive segmentation and linear prediation modeling. IEEE Trans Biomed Eng 43 (1):15–23

    Article  PubMed  CAS  Google Scholar 

  34. Outerbridge RE (1961) The etiology of chondromalacia patellae. J Bone Joint Surg (Br) 43-B:752–7

    Article  CAS  Google Scholar 

  35. Outerbridge R (1964) Further studies on the etiology of chondromalacia patellae. J Bone Joint Surg (Br) 46 (2):179–190

    Article  CAS  Google Scholar 

  36. Palmer AJR, Brown CP, McNally EG, Price AJ, Tracey I, Jezzard P, Carr AJ, Glyn-Jones S (2013) Non-invasive imaging of cartilage in early osteoarthritis. The bone & joint journal 95-B(6):738–46

    Article  CAS  Google Scholar 

  37. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  38. Peylan A (1953) Direct auscultation of the joints; preliminary clinical observations. Rheumatism 9(4):77–81

    PubMed  CAS  Google Scholar 

  39. Pihlajamäki HK, Kuikka PI, Leppänen VV, Kiuru MJ, Mattila VM (2010) Reliability of clinical findings and magnetic resonance imaging for the diagnosis of chondromalacia patellae. JBJS 92(4):927–934

    Article  Google Scholar 

  40. Platt JC (1999) Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Advances in large margin classifiers. MIT Press, Cambridge, pp 61–74

  41. Prior J, Mascaro B, Shark L, Stockdale J, Selfe J, Bury R, Cole P, Goodacre J (2010) Analysis of high frequency acoustic emission signals as a new approach for assessing knee osteoarthritis. Ann Rheum Dis 69(5):929–930

    Article  PubMed  CAS  Google Scholar 

  42. Quatman CE, Hettrich CM, Schmitt LC, Spindler KP (2011) The clinical utility and diagnostic performance of magnetic resonance imaging for identification of early and advanced knee osteoarthritis: a systematic review. Am J Sports Med 39(7):1557–68

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rangayyan RM, Oloumi F, Wu Y, Cai S (2013) Fractal analysis of knee-joint vibroarthrographic signals via power spectral analysis. Biomed Signal Process Control 8(1):23–29

    Article  Google Scholar 

  44. Rangayyan RM, Wu YF (2008) Screening of knee-joint vibroarthrographic signals using statistical parameters and radial basis functions. Med Biol Eng Comput 46(3):223–32

    Article  PubMed  Google Scholar 

  45. Rangayyan RM, Wu Y (2009) Analysis of vibroarthrographic signals with features related to signal variability and radial-basis functions. Ann Biomed Eng 37(1):156–63

    Article  PubMed  Google Scholar 

  46. Rangayyan RM, Wu Y (2010) Screening of knee-joint vibroarthrographic signals using probability density functions estimated with Parzen windows. Biomed Signal Process Control 5(1):53–58

    Article  Google Scholar 

  47. Reed ME, Villacis DC, Hatch GFR, Burke WS, Colletti PM, Narvy SJ, Mirzayan R, Vangsness CT (2013) 3.0-tesla MRI and arthroscopy for assessment of knee articular cartilage lesions, vol 36

  48. Sandell LJ, Aigner T (2001) Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res 3(2):107–13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Schindler OS (2004) Synovial plicae of the knee. Curr Orthop 18(3):210–219

    Article  Google Scholar 

  50. Scholkopf B, Smola A, Williamson R, Bartlett P (2000) New support vector algorithms. Neural Comput 12(5):1207–45

    Article  PubMed  CAS  Google Scholar 

  51. Schölkopf B., Burges CJ (1999) Advances in kernel methods: support vector learning. MIT Press, Cambridge

    Google Scholar 

  52. Shen Y, Rangayyan RM, Bell GD, Frank CB, Zhang YT, Ladly KO (1995) Localization of knee joint cartilage pathology by multichannel vibroarthrography. Med Eng Phys 17(8):583– 594

    Article  PubMed  CAS  Google Scholar 

  53. Slonim DK (2002) From patterns to pathways: gene expression data analysis comes of age. Nat Genet 32:502–508

    Article  PubMed  CAS  Google Scholar 

  54. Tavathia S, Rangayyan RM, Frank CB, Bell GD, Ladly KO, Zhang YT (1992) Analysis of knee vibration signals using linear prediction. IEEE Trans Biomed Eng 39(9):959–70

    Article  PubMed  CAS  Google Scholar 

  55. Umapathy K, Krishnan S (2006) Modified local discriminant bases algorithm and its application in analysis of human knee joint vibration signals. IEEE Trans Biomed Eng 53(3):517–23

    Article  PubMed  Google Scholar 

  56. Vapnik V (1999) An overview of statistical learning theory. IEEE Transactions on Neural Networks / a Publication of the IEEE Neural Networks Council 10(5):988–99

    Article  CAS  Google Scholar 

  57. Wakefield RJ, Kong KO, Conaghan PG, Brown AK, O’Connor PJ, Emery P (2003) The role of ultrasonography and magnetic resonance imaging in early rheumatoid arthritis. Clin Exp Rheumatol 21(5 Suppl 31):S42–9

    PubMed  CAS  Google Scholar 

  58. Walters C (1929) The value of joint auscultation. The Lancet 213(5514):920–921

    Article  Google Scholar 

  59. Welch PD (1967) The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15(2):70–73

    Article  Google Scholar 

  60. Wise CH (2015) Orthopaedic manual physical therapy from art to evidence. In: Wise CH (ed). F.A. Davis Company, Philadelphia

  61. Wu Y, Cai S, Yang S, Zheng F, Xiang N (2013) Classification of knee joint vibration signals using bivariate feature distribution estimation and maximal posterior probability decision criterion. Entropy 15 (4):1375–1387

    Article  Google Scholar 

  62. Wu Y (2015) Knee joint vibroarthrographic signal processing and analysis. Springer, Berlin

    Book  Google Scholar 

  63. Wu Y, Chen P, Luo X, Huang H, Liao L, Yao Y, Wu M, Rangayyan RM (2016) Quantification of knee vibroarthrographic signal irregularity associated with patellofemoral joint cartilage pathology based on entropy and envelope amplitude measures. Comput Methods Prog Biomed 130:1–12

    Article  Google Scholar 

  64. Zhang YT, Frank CB, Rangayyan RM, Bell GD (1992) Mathematical modeling and spectrum analysis of the physiological patello-femoral pulse train produced by slow knee movement. IEEE transactions on biomedical engineeringmedical engineering 39(9):971–9

    Article  CAS  Google Scholar 

  65. Zhang YT, Rangayyan RM, Frank CB, Bell GD (1994) Adaptive cancellation of muscle contraction interference in vibroarthrographic signals. IEEE Trans Biomed Eng 41(2):181–91

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Elsner.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

The initial idea for this project and great support during the course of the study was provided by Dr. Jacek Czernicki, who helped with patient recruitment and with conducting the measurements. The authors would also like to thank Dr. Annie Horng for analyzing the MRI data to produce the pathological findings and further Dr. Michael Krüger-Franke for his valuable help with patient recruitment.

This work was co-funded by the German Federal Ministry for Economic Affairs and Energy under grant No. ZIM KF3177601KJ3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Befrui, N., Elsner, J., Flesser, A. et al. Vibroarthrography for early detection of knee osteoarthritis using normalized frequency features. Med Biol Eng Comput 56, 1499–1514 (2018). https://doi.org/10.1007/s11517-018-1785-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-018-1785-4

Keywords

Navigation