Skip to main content
Log in

Automatic deformable PET/MRI registration for preclinical studies based on B-splines and non-linear intensity transformation

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

PET images deliver functional data, whereas MRI images provide anatomical information. Merging the complementary information from these two modalities is helpful in oncology. Alignment of PET/MRI images requires the use of multi-modal registration methods. Most of existing PET/MRI registration methods have been developed for humans and few works have been performed for small animal images. We proposed an automatic tool allowing PET/MRI registration for pre-clinical study based on a two-level hierarchical approach. First, we applied a non-linear intensity transformation to the PET volume to enhance. The global deformation is modeled by an affine transformation initialized by a principal component analysis. A free-form deformation based on B-splines is then used to describe local deformations. Normalized mutual information is used as voxel-based similarity measure. To validate our method, CT images acquired simultaneously with the PET on tumor-bearing mice were used. Results showed that the proposed algorithm outperformed affine and deformable registration techniques without PET intensity transformation with an average error of 0.72 ± 0.44 mm. The optimization time was reduced by 23% due to the introduction of robust initialization. In this paper, an automatic deformable PET-MRI registration algorithm for small animals is detailed and validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Experimental datasets used for the validation can be asked by email to the authors.

References

  1. Alpert NM, Bradshaw JF, Kennedy D, Correia JA (1990) The principal axes transformation a method for image registration. J Nucl Med 31(10):1717–1722

    PubMed  CAS  Google Scholar 

  2. Ardekani B, Braun M, Hutton BF, Kanno I, Iida H (1995) A fully automatic multimodality image registration algorithm. J Comput Assist Tomogr 19(4):615–623

    Article  PubMed  CAS  Google Scholar 

  3. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage 54(3):2033–2044

    Article  PubMed  Google Scholar 

  4. Baisa NL, Bricq S, Lalande A (2017) MRI-PET registration with automated algorithm in pre-clinical studies. CoRR, abs/1705.07062

  5. Bernier M, Lepage M, Lecomte R, Tremblay L, Doré-Savard L, Descoteaux M (2011) Combining parallel multiresolution and PCA initialization for a fully automatic PET-MRI registration. ISMRM 2011:3255

    Google Scholar 

  6. Brunotte F, Haas H, Collin B, Oudot A, Bricq S, Lalande A, Tizon X, Vrigneaud JM, Walker PM (2013) Integrated PET/MRI in preclinical studies state of the art. Tijdschr Nucl Gen 35(4):1144–1152

    Google Scholar 

  7. Byrd RH, Lu P, Nocedal J, Zhu C (1995) A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput 16(5):1190–1208

    Article  Google Scholar 

  8. Fei B, Wang H, Muzic RF Jr, Flask C, Wilson DL, Duerk JL, Feyes DK, Oleinick NL (2006) Deformable and rigid registration of MRI and microPET images for photodynamic therapy of cancer in mice. Med Phys 33(3):753–760

    Article  PubMed  Google Scholar 

  9. Hayakawa N, Uemura K, Ishiwata K, Shimada Y, Ogi N, Nagaoka T, Toyama H, Oda K, Tanaka A, Endo K, Senda M (2000) A PET-MRI registration technique for PET studies of the rat brain. Nucl Med Biol 27:121–125

    Article  PubMed  CAS  Google Scholar 

  10. Imtiaz MS, Wahid KA (2015) Color enhancement in endoscopic images using adaptive sigmoid function and space variant color reproduction. Comput Math Methods Med 2015:607407

    Article  PubMed  PubMed Central  Google Scholar 

  11. Judenhofer MS, Cherry SR (2013) Applications for preclinical PET/MRI. Semin Nucl Med 43:19–29

    Article  PubMed  Google Scholar 

  12. Kagadis GC, Loudos G, Katsanos K, Langer SG, Nikiforidis GC (2010) In vivo small animal imaging: Current status and future prospects. Med Phys 37(12):6421–6442

    Article  PubMed  Google Scholar 

  13. Kybic J, Unser M (2003) Fast parametric elastic image registration. IEEE Trans Image Process 12(11):1427–1442

    Article  PubMed  Google Scholar 

  14. Likar B, Pernuš F (2001) A hierarchical approach to elastic registration based on mutual information. Image Vis Comput 19:33–44

    Article  Google Scholar 

  15. Lu Z, Chen W (2007) Fast and robust 3-D image registration algorithm based on principal component analysis. Bioinformatics and biomedical engineering, 2007. ICBBE 2007:872–875

    Google Scholar 

  16. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16(2):187–198

    Article  PubMed  CAS  Google Scholar 

  17. Mattes D, Haynor DR, Vesselle H, Lewellyn TK, Eubank W (2003) PET-CT image registration in the chest using free-form deformations. IEEE Trans Med Imaging 22(1):120–128

    Article  PubMed  Google Scholar 

  18. Nocedal J, Wright S (2006) Numerical Optimization. Springer-Verlag, New York

    Google Scholar 

  19. Pichler BJ, Wehrl HF, Kolb A, Judenhofer MS (2008) Positron emission tomography/magnetic resonance imaging: The next generation of multimodality. Semin Nucl Med 38(3):199–208. https://doi.org/10.1053/j.semnuclmed.2008.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pluim JP, Maintz JB, Viergever MA (2003) Mutual-information-based registration of medical images: A survey. IEEE Trans Med Imaging 22(8):986–1004

    Article  PubMed  Google Scholar 

  21. Qin B, Shen Z, Zhou Z, Zhou J, Lv Y (2016) Structure matching driven by joint-saliency-structure adaptive kernel regression. Appl Soft Comput 46:851–867

    Article  Google Scholar 

  22. Qu X, Gao X, Xu X, Zhu S, Liang J (2016) A hybrid registration-based method for whole-body micro-CT mice images. Med Biol Eng Comput 54:1037–1048

    Article  PubMed  Google Scholar 

  23. Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ (1999) Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Trans Med Imaging 18(8):712–721

    Article  PubMed  CAS  Google Scholar 

  24. Shan ZY, Mateja SJ, Reddick WE, Glass JO, Shulkin BL (2010) Retrospective evaluation of PET-MRI registration algorithms. J Digit Imaging 24(3):485–493

    Article  PubMed Central  Google Scholar 

  25. Sotiras A, Davatzikos C, Paragios N (2013) Deformable medical image registration: A survey. IEEE Trans Med Imaging 32(7):1153–1190

    Article  PubMed  PubMed Central  Google Scholar 

  26. Studholme C, Hill DL, Hawkes DJ (1997) Automated three-dimensional registration of magnetic resonance and positron emission tomography brain images by multiresolution optimization of voxel similarity measures. Med Phys 24(1):25–35

    Article  PubMed  CAS  Google Scholar 

  27. Vaquero J, Desco M (2001) PET, CT, and MR image registration of the rat brain and skull. IEEE Trans Nucl Sci 48(4):1440–1445

    Article  Google Scholar 

  28. Woods RP, Cherry SR, Mazziotta JC (1992) Rapid automated algorithm for aligning and reslicing PET images. J Comput Assist Tomogr 16(4):620–633

    Article  PubMed  CAS  Google Scholar 

  29. Woods RP, Mazziotta JC, Cherry SR (1993) MRI-PET registration with automated algorithm. J Comput Assist Tomogr 17(4):536–546

    Article  PubMed  CAS  Google Scholar 

  30. Xu R, Chen Y, Tang S, Morikawa S, Kurumi Y (2008) Parzen-window based normalized mutual information for medical image registration. IEICE Trans Inf Syst E91.D:132–144

    Article  Google Scholar 

  31. Yao R, Lecomte R, Crawford ES (2012) Small-animal PET: what is it, and why do we need it? J Nucl Med Technol 40(3):157–165. https://doi.org/10.2967/jnmt.111.098632

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a French Government grant managed by the French National Research Agency (ANR) under the program ‘Investissements d’Avenir’ (with reference ANR- 10-EQPX-05-01/IMAPPI Equipex) and by the Fondation de Coopération Scientifique Bourgogne Franche-Comté.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphanie Bricq.

Ethics declarations

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bricq, S., Kidane, H.L., Zavala-Bojorquez, J. et al. Automatic deformable PET/MRI registration for preclinical studies based on B-splines and non-linear intensity transformation. Med Biol Eng Comput 56, 1531–1539 (2018). https://doi.org/10.1007/s11517-018-1797-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-018-1797-0

Keywords

Navigation