Skip to main content

Advertisement

Log in

Classification of ECG beats using deep belief network and active learning

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

A new semi-supervised approach based on deep learning and active learning for classification of electrocardiogram signals (ECG) is proposed. The objective of the proposed work is to model a scientific method for classification of cardiac irregularities using electrocardiogram beats. The model follows the Association for the Advancement of medical instrumentation (AAMI) standards and consists of three phases. In phase I, feature representation of ECG is learnt using Gaussian-Bernoulli deep belief network followed by a linear support vector machine (SVM) training in the consecutive phase. It yields three deep models which are based on AAMI-defined classes, namely N, V, S, and F. In the last phase, a query generator is introduced to interact with the expert to label few beats to improve accuracy and sensitivity. The proposed approach depicts significant improvement in accuracy with minimal queries posed to the expert and fast online training as tested on the MIT-BIH Arrhythmia Database and the MIT-BIH Supra-ventricular Arrhythmia Database (SVDB). With 100 queries labeled by the expert in phase III, the method achieves an accuracy of 99.5% in “S” versus all classifications (SVEB) and 99.4% accuracy in “V ” versus all classifications (VEB) on MIT-BIH Arrhythmia Database. In a similar manner, it is attributed that an accuracy of 97.5% for SVEB and 98.6% for VEB on SVDB database is achieved respectively.

Reply- Deep belief network augmented by active learning for efficient prediction of arrhythmia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Acharya R, Kumar A, Bhat P et al (2004) Classification of cardiac abnormalities using heart rate signals. Med Biol Eng Comput 42:288–293

    Article  CAS  Google Scholar 

  2. Ahn CW, Ramakrishna RS (2003) Elitism-based compact genetic algorithms. IEEE Trans Evol Comput 7:367–385

    Article  Google Scholar 

  3. Al Rahhal MM, Bazi Y, AlHichri H, Alajlan N, Melgani G, Yager RR (2016) Deep learning approach for active classification of electrocardiogram signals. Inform Sci 345:340–354

    Article  Google Scholar 

  4. Alonso-Atienza F, Morgado E, Fernandez-Martinez L, Garcia-Alberola A, Rojo-Alvarez JL (2014) Detection of life-threatening arrhythmias using feature selection and support vector machines. IEEE Trans Biomed Eng 61:832–840

    Article  Google Scholar 

  5. Alvarado AS, Lakshminarayan C, Principe JC (2012) Time-based compression and classification of heartbeats. IEEE Trans Biomed Eng 59:1641–1648

    Article  Google Scholar 

  6. Bono V, Mazomenos EB, Chen T, Rosengarten JA, Acharyya A, Maharatna K et al (2015) Development of an automated updated Selvester QRS scoring system using SWT-based QRS fractionation detection and classification. IEEE J Biomed Health Inf 18:193–204

    Article  Google Scholar 

  7. Castro RM, Nowak RD (2008) Minimax bounds for active learning. IEEE Trans Inf Theory 54:2339–2353

    Article  Google Scholar 

  8. Chang PC, Lin JJ, Hsieh JC, Weng J (2012) Myocardial infarction classification with multi-lead ECG using hidden Markov models and Gaussian mixture models. Appl Soft Comput 12:3165–3175

    Article  Google Scholar 

  9. De Chazal P, O’Dwyer M, Reilly RB (2004) Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng 51:1196–1206

    Article  Google Scholar 

  10. De Chazal P, Reilly RB (2006) A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng 53:2535–2543

    Article  Google Scholar 

  11. Dima S M, Panagiotou C, Mazomenos EB, Rosengarten JA, Maharatna K, Gialelis JV et al (2013) On the detection of myocadial scar based on ECG/VCG analysis. IEEE Trans Biomed Eng 60:3399–3409

    Article  Google Scholar 

  12. Gosselin PH, Cord M (2008) Active learning methods for interactive image retrieval. IEEE Trans Image Process 17:1200–1211

    Article  Google Scholar 

  13. Huanhuan M, Yue Z (2014) Classification of electrocardiogram signals with deep belief networks. In: Proceedings of the 2014 IEEE seventeenth international conference on computer science engineering CSE, pp 7–12

  14. Homaeinezhad MR, Atyabi SA, Tavakkoli E, Toosi HN, Ghaffari A, Ebrahimpour R (2012) ECG arrhythmia recognition via a neuro-SVM–KNN hybrid classifier with virtual QRS image-based geometrical features. Expert Syst Appl 39:2047–2058

    Article  Google Scholar 

  15. Hu YH, Palreddy S, Tompkins WJ (1997) A patient-adaptable ECG beat classifier using a mixture of experts approach. IEEE Trans Biomed Eng 44:891–900

    Article  CAS  Google Scholar 

  16. Ince T, Kiranyaz S, Gabbouj M (2009) A generic and robust system for automated patient-specific classification of ECG signals. IEEE Trans Biomed Eng 56:1415–1426

    Article  Google Scholar 

  17. Javadi M, Arani SAAA, Sajedin A, Ebrahimpour R (2013) Classification of ECG arrhythmia by a modular neural network based on mixture of experts and negatively correlated learning. Biomed Signal Process Control 8:289–296

    Article  Google Scholar 

  18. Jiang W, Kong SG (2007) Block-based neural networks for personalized ECG signal classification. IEEE Trans Neural Netw 18:1750–1761

    Article  Google Scholar 

  19. Kutlu Y, Kuntalp D (2012) Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients. Comput Methods Progr Biomed 105:257–267

    Article  Google Scholar 

  20. Langkvist M, Karlsson L, Loutfi A (2012) Sleep stage classification using unsupervised feature learning. Adv Artif Neural Syst, e107046

  21. Luo T, Kramer K, Goldgof DB (2005) Active learning to recognize multiple types of plankton. J Mach Learn Res 6:589–613

    Google Scholar 

  22. Maršánová L, Ronzhina M, Smíšek R, Vítek M Němcová A, Smital L, Nováková M (2017) ECG features and methods for automatic classification of ventricular premature and ischemic heartbeats: a comprehensive experimental study. https://doi.org/10.1038/s41598-017-10942-6

  23. Martis RJ, Acharya UR, Min LC (2013) ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed Signal Process Control 8:437–448

    Article  Google Scholar 

  24. Melgani F, Bazi Y (2008) Classification of electrocardiogram signals with support vector machines and particle swarm optimization. IEEE Trans Inf Technol Biomed 12:667–677

    Article  Google Scholar 

  25. Ning X, Selesnick IW (2013) ECG enhancement and QRS detection based on sparse derivatives. Biomed Signal Process Control 8:713–723

    Article  Google Scholar 

  26. Pasolli E, Melgani F, Bazi Y (2011) Support vector machine active learning through significance space construction. IEEE Geosci Remote Sens Lett 8:431–435

    Article  Google Scholar 

  27. Phukpattaranont P (2015) QRS detection algorithm based on the quadratic filter. Expert Syst Appl 42:867–877

    Article  Google Scholar 

  28. Sameni R, Shamsollahi MB, Jutten C, Clifford GD (2007) A nonlinear Bayesian filtering framework for ECG Denoising. IEEE Trans Biomed Eng 54:2172–2185

    Article  Google Scholar 

  29. Schwartzman A, Wolf T, Gepstein L, Hayam G, Lessick J, Reisfeld D, Schwartz Y, Uretzky G, Ben-Haim S (2001) Characterisation of acute myocardial ischaemia in a canine model based on principal component analysis of unipolar endocardial electrograms. Med Biol Eng Comput 39:571–578

    Article  CAS  Google Scholar 

  30. Thaler MS (1999) The only EKG book you’ll ever need, 3rd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  31. Tracey BH, Miller EL (2012) Nonlocal means denoising of ECG signals. IEEE Trans Biomed Eng 59:2383–2386

    Article  Google Scholar 

  32. Wang J, Ye Y, Pan X, Gao X (2015) Parallel-type fractional zero-phase filtering for ECG signal denoising. Biomed Signal Process Control 18:36–41

    Article  Google Scholar 

  33. Yadav SK, Sinha R, Bora PK (2015) Electrocardiogram signal denoising using non-local wavelet transform domain filtering. IET Signal Process 9:88–96

    Article  Google Scholar 

  34. Yang H, Kan C, Liu G, Chen Y (2013) Spatiotemporal differentiation of myocardial infarctions. IEEE Trans Autom Sci Eng 10:938–947

    Article  CAS  Google Scholar 

  35. Ye C, Kumar BVKV, Coimbra MT (2012) Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Trans Biomed Eng 59:2930–2941

    Article  Google Scholar 

  36. Yu SN, Chou KT (2008) Integration of independent component analysis and neural networks for ECG beat classification. Expert Syst Appl 34:2841–2846

    Article  Google Scholar 

  37. Zhang Z, Dong J, Luo X, Choi KS, Wu X (2014) Heartbeat classification using disease-specific feature selection. Comput Biol Med 46:79–89

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadambari K. V..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

G., S., T., K.P. & V., K.K. Classification of ECG beats using deep belief network and active learning. Med Biol Eng Comput 56, 1887–1898 (2018). https://doi.org/10.1007/s11517-018-1815-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-018-1815-2

Keywords

Navigation