Skip to main content

Advertisement

Log in

Biomechanical features of six design of the delta external fixator for treating Pilon fracture: a finite element study

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Pilon fractures can be caused by high-energy vertical forces which may result in long-term patient immobilization. Many experts in orthopedic surgery recommend the use of a Delta external fixator for type III Pilon fracture treatment. This device can promote immediate healing of fractured bone, minimizing the rate of complications as well as allowing early mobilization. The characteristics of different types of the Delta frame have not been demonstrated yet. By using the finite element method, this study was conducted to determine the biomechanical characteristics of six different configurations (Model 1 until Model 6). CT images from the lower limb of a healthy human were used to reconstruct three-dimensional models of foot and ankle bones. All bones were assigned with isotropic material properties and the cartilages were assigned to exhibit hyperelasticity. A linear link was used to simulate 37 ligaments at the ankle joint. Axial loads of 70 and 350 N were applied at the proximal tibia to simulate the stance and swing phase. The metatarsals and calcaneus were fixed distally in order to prevent rigid body motion. A synthetic ankle bone was used to validate the finite element model. The simulated results showed that Delta3 produced the highest relative micromovement (0.09 mm, 7 μm) during the stance and swing phase, respectively. The highest equivalent von Mises stress was found at the calcaneus pin of the Delta4 (423.2 MPa) as compared to others. In conclusion, Delta1 external fixator was the most favorable option for type III Pilon fracture treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akiyamat K, Sakai T, Sugimoto N, Yoshikawa H, Sugamoto K (2012) Three-dimensional distribution of articular cartilage thickness in the elderly talus and calcaneus analyzing the subchondral bone plate density. Osteoarthr Cartil 20:296–304

    Article  Google Scholar 

  2. Anderson FC, Pandy MG (2001) Static and dynamic optimization solutions for gait are practically equivalent. J Biomech 34:153–161

    Article  CAS  PubMed  Google Scholar 

  3. Baca V, Horak Z, Mikulenka P, Dzupa V (2008) Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses. Med Eng Phys 30:924–930

    Article  PubMed  Google Scholar 

  4. Bacon S, Smith WR, Morgan SJ, Hasenboehler E, Philips G, Williams A (2008) A retrospective analysis of comminuted intra-articular fractures of the tibial plafond: open reduction and internal fixation versus external Ilizarov fixation. Injury 39:196–202

    Article  PubMed  Google Scholar 

  5. Bajuri MN, Kadir MRA, Raman MM, Kamarul T (2012) Mechanical and functional assessment of the wrist affected by rheumatoid arthritis: a finite element analysis. Med Eng Phys 34:1294–1302

    Article  CAS  PubMed  Google Scholar 

  6. Barbieri R, Schenk R, Koval K, Aurori K, Aurori B (1996) Hybrid external fixation in the treatment of tibial plafond fractures. Clin Orthop Relat Res 332:16–22

    Article  Google Scholar 

  7. Benli S, Aksoy S, Havitcioglu H, Kucuk M (2008) Evaluation of bone plate with low-stiffness material in terms of stress distribution. J Biomech 14:3229–3235

    Article  Google Scholar 

  8. Beumar A, van Hemert WL, Swierstra BA, Jasper LE, Belkoff SM (2003) A biomechanical evaluation of the tibiofibular and tibiotalar ligaments of the ankle. Foot Ankle Int 24:426–429

    Article  Google Scholar 

  9. Blanchard R, Dejaco A, Bongaers E, Hellmich C (2013) Intravoxel bone micromechanics for microCT-based finite element simulations. J Biomech 46:2710–2721

    Article  PubMed  Google Scholar 

  10. Bonar SK, Marsh JL (1994) Tibial plafond fractures: changing principles of treatment. J Am Acad Orthop Surg 2:297–305

    Article  CAS  PubMed  Google Scholar 

  11. Bone L, Stegemann P, McNamara K, Seibel R (1993) External fixation of severely comminuted and open tibial pilon fractures. Clin Orthop Relat Res 292:101–107

    Google Scholar 

  12. Brianza S, Brighenti V, Lansdowne JL, Schwieger K, Boure L (2011) Finite element analysis of a novel pin–sleeve system for external fixation of distal limb fractures in horses. Vet J 190:260–267

    Article  PubMed  Google Scholar 

  13. Brown CP, Nguyen TC, Moody HR, Crawford RW, Oloyede A (2009) Assessment of common hyperelastic constitutive equations for describing normal and osteoarthritis articular cartilage. Proc Inst Mech Eng H J Eng Med 223:643–652

    Article  CAS  Google Scholar 

  14. Buess E, Kaelin A (1998) One hundred pediatric femoral fractures: epidemiology, treatment attitudes, and early complications. J Pediatr Orthop B 7:186–192

    Article  CAS  PubMed  Google Scholar 

  15. Burgers PTPW, Riel MPJMV, Vogels LMM, Stam R, Patka P, Lieshout EMMV (2011) Rigidity of unilateral external fixators—a biomechanical study. Injury 42:1449–1454

    Article  CAS  PubMed  Google Scholar 

  16. Carroll EA, Koman LA (2011) External fixation and temporary stabilization of femoral and tibial trauma. J Surg Orthop Adv 20:74–81

    PubMed  Google Scholar 

  17. Chandran P, Puttaswamaiah R, Dhillon MS, Gill SS (2006) Management of complex open fracture injuries of the midfoot with external fixation. J Foot Ankle Surg 45:308–315

    Article  PubMed  Google Scholar 

  18. Chao EYS, Neluheni EVD, Hsu RWW, Paley D (1994) Biomechanics of malalignment. Orthop Clin North Am 25:379–386

    CAS  PubMed  Google Scholar 

  19. Cheema GS, Arora S, Sabat D, Singla J, Goel N, Maini L (2011) The results of two-staged operative management of pilon fractures—a review of 25 cases. J Clin Orthop Trauma 2:104–108

    Article  Google Scholar 

  20. Chen WP, Tai CL, Shih CH, Hsieh PH, Leou MC, Lee MS (2004) Selection of fixation devices in proximal femur rotational osteotomy: clinical complications and finite element analysis. Clin Biomech 19:255–262

    Article  Google Scholar 

  21. Chen G, Schmutz B, Wullschleger M, Pearcy MJ, Schuetz MA (2010) Computational investigations of mechanical failures of internal plate fixation. Proc Inst Mech Eng H J Eng Med 224:119–126

    Article  CAS  Google Scholar 

  22. Cheung JT-M, Zhang M, Leung AKL, Fan YB (2005) Three-dimensional finite element analysis of the foot during standing—a material sensitivity study. J Biomech 38:1045–1054

    Article  PubMed  Google Scholar 

  23. Cheung JT-M, Zhang M, An KN (2006) Effect of Achilles tendon loading on plantar fascia tension in the standing foot. Clin Biomech 21:194–203

    Article  Google Scholar 

  24. Cordey J, Borgeaud M, Perren SM (2000) Force transfer between the plate and the bone: relative importance of the bending stiffness of the screws and the friction between plate and bone. Injury 31:S-C21–S-C28

    Article  Google Scholar 

  25. Donald AW (2006) Master techniques in orthopaedic surgery: fractures, 2nd edn. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  26. Donaldson FE, Pankaj P, Simpson AHRW (2012) Bone properties affect loosening of half-pin external fixators at the pin–bone interface. Injury 43:1764–1770

    Article  PubMed  Google Scholar 

  27. Dudko S, Kusz D, Wojciechowski P, Stoltny T (2004) Operative treatment of ankles fractures using internal osteosynthesis by a minimal surgical approach. Foot 14:185–191

    Article  Google Scholar 

  28. Ebrahimi H, Rabinovich M, Vuleta V, Zalcman D, Shah S, Dubov A, Roy K, Siddiqui FS, Schemitsch EH, Bougherara H, Zdero R (2012) Biomechanical properties of an intact, injured, repaired, and healed femur: an experimental and computational study. J Mech Behav Biomed Mater 16:121–135

    Article  PubMed  Google Scholar 

  29. Etter C, Ganz R (1991) Long-term results of tibial plafond fractures treated with open reduction and internal fixation. Arch Orthop Trauma Surg 110:277–283

    Article  CAS  PubMed  Google Scholar 

  30. Fan Y, Xiu K, Duan H, Zhang M (2008) Biomechanical and histological evaluation of the application of biodegradable poly-L-lactic cushion to the plate internal fixation for bone fracture healing. Clin Biomech 23:S7–S16

    Article  Google Scholar 

  31. Fragomen AT, Rozbruch SR (2007) The mechanics of external fixation. HSS J 3:13–29

    Article  PubMed  Google Scholar 

  32. Fritsch A, Hellmich C, Dormieux L (2009) Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength. J Theor Biol 260:230–252

    Article  CAS  PubMed  Google Scholar 

  33. Gardner TN, Mishra S (2003) The biomechanical environment of a bone fracture and its influence upon the morphology of healing. Med Eng Phys 25:455–464

    Article  PubMed  Google Scholar 

  34. Gislason MK, Stansfield B, Nash DH (2010) Finite element model creation and stability considerations of complex biological articulation: the human wrist joint. Med Eng Phys 32:523–531

    Article  PubMed  Google Scholar 

  35. Gomez-Benito MJ, Garcia-Aznar JM, McCarthy ID, Draper E, Wallace A, Doblare M (2008) Load sharing between fractured bone and fixator: experimental and computational analysis. J Biomech 41:S293

    Article  Google Scholar 

  36. Gorsse S, Miracle DB (2003) Mechanical properties of Ti-6Al-4V/TiB composites with randomly oriented and aligned TiB reinforcement. Acta Mater 51:2427–2442

    Article  CAS  Google Scholar 

  37. Gregory P, Pevny T, Teague D (1996) Early complications with external fixation of pediatric femoral shaft fractures. J Orthop Trauma 10:191–198

    Article  CAS  PubMed  Google Scholar 

  38. Hammond AW, Crist BD (2012) Arthroscopic management of C3 tibia plafond fractures: a technical guide. J Foot Ankle Surg 51:382–386

    Article  PubMed  Google Scholar 

  39. Hedin H, Larsson S (2004) Technique and considerations when using external fixation as a standard treatment of femoral fractures in children. Injury 35:1255–1263

    Article  PubMed  Google Scholar 

  40. Heintz S, Gutierrez-Farewik EM (2007) Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach. Gait Posture 26:279–288

    Article  PubMed  Google Scholar 

  41. Hellmich C, Kober C, Erdmann B (2008) Micromechanics-based conversion of CT data into anisotropic elasticity tensors, applied to FE simulations of a mandible. Ann Biomed Eng 36:108–122

    Article  PubMed  Google Scholar 

  42. Hopton BP, Harris NJ (2010) Fractures of the foot and ankle. Surgery 28:502–507

    Google Scholar 

  43. Huikes R, Chao EYS (1986) Guidelines for external fixation frame rigidity and stresses. J Orthop Res 4:68–75

    Article  Google Scholar 

  44. Hutson JJ (2008) Salvage of pilon fracture nonunion and infection with circular tensioned wire fixation. Foot Ankle Clin N Am 13:29–68

    Article  Google Scholar 

  45. Iaquinto JM, Wayne JS (2010) Computational model of the lower leg and foot/ankle complex: application to arch stability. J Biomech Eng 132:021009

    Article  PubMed  Google Scholar 

  46. Izaham RMAR, Kadir MRA, Rashid AHA, Hossain MG, Kamarul T (2012) Finite element analysis of Puddu and Tomofix plate fixation for open wedge high tibial osteotomy. Injury 43:898–902

    Article  Google Scholar 

  47. Jasinska-Choromanska DE (2010) Problems related to mechanics in the design of external osteosynthesis. J Theor Appl Mech 48:453–463

    Google Scholar 

  48. Kapukaya A, Subasi M, Arslan H (2005) Management of comminuted closed tibial plafond fractures using circular external fixators. Acta Orthop Belg 71:582–589

    PubMed  Google Scholar 

  49. Kapukaya A, Subasi M, Arslan H, Tuzuner T (2005) Non-reducible, open tibial plafond fractures treated with a circular external fixator (is the current classification sufficient for identifying fractures in this area?). Injury 36:1480–1487

    Article  PubMed  Google Scholar 

  50. Karnezis IA, Miles AW, Cunningham JL, Learmonth ID (1999) Axial preload in external fixator half-pins: a preliminary mechanical study of an experimental bone anchorage system. Clin Biomech 14:69–73

    Article  CAS  Google Scholar 

  51. Ketz J, Sanders R (2012) Results of staged posterior fixation in the treatment of high-energy tibial pilon fractures. Fur Sprunggelenk 10:27–36

    Article  Google Scholar 

  52. Kim H-J, Kim S-H, Chang S-H (2011) Bio-mechanical analysis of a fractures tibia with composite bone plates according to the diaphyseal oblique fracture angle. Compos Part B 42:666–674

    Article  CAS  Google Scholar 

  53. Kim S-H, Chang S-H, Son D-S (2011) Finite element analysis of the effect of bending stiffness and contact condition of composite bone plates with simple rectangular cross-section on the bio-mechanical behaviour of fractures long bones. Compos Part B 42:1731–1738

    Article  CAS  Google Scholar 

  54. Krischak GD, Janousek A, Wolf S, Augat P, Kinzl L, Claes LE (2002) Effects of one-plane and two-plane external fixation on sheep osteotomy healing and complications. Clin Biomech 17:470–476

    Article  Google Scholar 

  55. Li Z, Kim J-E, Davidson JS, Etheridge BS, Alonso JE, Eberhardt AW (2007) Biomechanical response of the pubic symphysis in lateral pelvic impacts: a finite element study. J Biomech 40:2758–2766

    Article  PubMed  Google Scholar 

  56. Li T, Hu K, Cheng L, Ding Y, Ding Y, Shao J, Kong L (2011) Optimum selection of the dental implant diameter and length in the posterior mandible with poor bone quality—a 3D finite element analysis. Appl Math Model 35:446–456

    Article  CAS  Google Scholar 

  57. Liacouras PC, Wayne JS (2007) Computational modeling to predict mechanical function of joints: application to the lower leg simulation of two cadaver studies. J Biomech Eng 129:811–817

    Article  PubMed  Google Scholar 

  58. Liporace FA, Yoon RS (2012) An adjunct to percutaneous plate insertion to obtain optimal sagittal plane alignment in the treatment of pilon fractures. J Foot Ankle Surg 51:275–277

    Article  PubMed  Google Scholar 

  59. MacLeod AR, Pankaj P, Simpson AHRW (2012) Does screw–bone interface modelling matter in finite element analyses? J Biomech 45:1712–1716

    Article  PubMed  Google Scholar 

  60. Maquer G, Burki A, Nuss K, Zysset PK, Tannast M (2016) Head–neck osteoplasty has minor effect on the strength of an ovine cam-FAI model: in vitro and finite element analysis. Clin Orthop Relat Res 474:2633–2640

    Article  PubMed  PubMed Central  Google Scholar 

  61. Marsh JL, Nepola JV, Wuest TK, Osteen D, Cox K, Oppenheim W (1991) Unilateral external fixation until healing with the dynamic axial fixator for severe open tibial fractures. J Orthop Trauma 5:341–348

    Article  CAS  PubMed  Google Scholar 

  62. Mauffrey C, Vasario G, Battiston B, Lewis C, Beazley J, Seligson D (2011) Tibial pilon fractures: a review of incidence, diagnosis, treatment, and complications. Acta Orthop Belg 77:432–440

    PubMed  Google Scholar 

  63. Millington SA, Grabner M, Wozelka R, Anderson DD, Hurwitz SR, Crandall JR (2007) Quantification of ankle articular cartilage topography and thickness using a high resolution stereophotography system. Osteoarthr Cartil 15:205–211

    Article  CAS  PubMed  Google Scholar 

  64. Moazen M, Mak JH, Etchels LW, Jin Z, Wilcox RK, Jones AC, Tsiridis E (2013) The effect of fracture stability on the performance of locking plate fixation in periprosthetic femoral fractures. J Arthroplast 28:1589–1595

    Article  Google Scholar 

  65. Morin C, Vass V, Hellmich C (2017) Micromechanics of elastoplastic porous polycrystals: theory, algorithm, and application to osteonal bone. Int J Plast 91:238–267

    Article  CAS  Google Scholar 

  66. Nabhani F, Wake M (2002) Computer modelling and stress analysis of the lumbar spine. J Mater Process Technol 127:40–47

    Article  Google Scholar 

  67. Nakamura S, Crowninshield RD, Cooper RR (1981) An analysis of soft tissue loading in the foot—a preliminary report. Bull Prosthet Res 18:27–34

    Google Scholar 

  68. Nassiri M, MacDonald B, O'Byrne JM (2013) Computational modelling of long bone fractures fixed with locking plates—how can the risk of implant failure be reduced? J Orthop 15:29–37

    Article  Google Scholar 

  69. Natali AN (1992) Nonlinear interaction phenomena between bone and pin. Clin Mater 9:109–114

    Article  Google Scholar 

  70. Netter FH (2003) Atlas of human anatomy, 3rd edn. ICON Learning System, USA

    Google Scholar 

  71. O'Doherty DM, Butler SP, Goodship AE (1995) Stress protection due to external fixation. J Biomech 28:575–586

    Article  CAS  PubMed  Google Scholar 

  72. Oni OOA, Capper M, Soutis C (1993) A finite element analysis of the effect of pin distribution on the rigidity of a unilateral external fixation system. Injury 24:525–527

    Article  CAS  PubMed  Google Scholar 

  73. Oni OOA, Capper M, Soutis C (1995) External fixation of upper limb fractures: the effect of pin offset on fixator stability. Biomaterials 16:263–264

    Article  CAS  PubMed  Google Scholar 

  74. Ou Y-J (2009) Kinematic adjustability of unilateral external fixators for fracture reduction and alignment of axial dynamization. J Biomech 42:1974–1980

    Article  PubMed  Google Scholar 

  75. Paley D, Chaudray M, Pirone AM, Lentz P, Kautz D (1990) Treatment of malunions and mal-nonunions of the femur and tibia by detailed preoperative planning and the Ilizarov techniques. Orthop Clin North Am 21:667–691

    CAS  PubMed  Google Scholar 

  76. Pellegrini M, Cuchacovich N, Lagos L, Henriquez H, Carcuro G, Bastias C (2012) Minimally-invasive alternatives in the treatment of distal articular tibial fractures. Fur Sprunggelenk 10:37–45

    Article  Google Scholar 

  77. Peng L, Bai J, Zeng X, Zhou Y (2006) Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions. Med Eng Phys 28:227–233

    Article  PubMed  Google Scholar 

  78. Perren SM (1979) Physical and biological aspects of fracture healing with special reference to internal fixation. Clinical Orthopaedic 138:175–196

    Google Scholar 

  79. Pfaeffle HJ, Tomaino MM, Grewal R, Xu J, Boardman ND, Woo SL, Herndon JH (1996) Tensile properties of the interosseous membrane of the human forearm. J Orthop Res 14:842–845

    Article  CAS  PubMed  Google Scholar 

  80. Picanz J (1990) Poor results mark ORIF of tibial plafond fractures. Orthop Today 10:1–2

    Google Scholar 

  81. Piper KJ, Won HY, Ellis AM (2005) Hybrid external fixation in complex tibial plateau and plafond fractures: an Australian audit of outcomes. Injury 36:178–184

    Article  CAS  PubMed  Google Scholar 

  82. Prayson MJ, Moon BS (1999) Stabilization of the fractured tibial plafond. Oper Tech Orthop 9:216–228

    Article  Google Scholar 

  83. Qiu TX, Teo EC, Yan YB, Lei W (2011) Finite element modeling of a 3D coupled foot-boot model. Med Eng Phys 33:1228–1233

    Article  PubMed  Google Scholar 

  84. Ramlee MH, Kadir MRA, Harun H (2013) Three-dimensional modeling and analysis of a human ankle joint. IEEE 74–78

  85. Ramlee MH, Kadir MRA, Harun H (2014) Three-dimensional modelling and finite element analysis of an ankle external fixator. Adv Mater Res 845:183–188

    Article  Google Scholar 

  86. Ramlee MH, Kadir MRA, Murali MR, Kamarul T (2014) Biomechanical evaluation of two commonly used external fixators in the treatment of open subtalar dislocation—a finite element analysis. Med Eng Phys In press

  87. Ramlee MH, Kadir MRA, Murali MR, Kamarul T (2014) Finite element analysis of three commonly used external fixation devices for treating type III pilon fractures. Med Eng Phys In press

  88. Rammelt S, Marti RK, Raaymakers ELFB, Grass R, Zwipp H (2012) Joint preserving reconstruction of malunited pilon fractures. Fur Sprunggelenk 10:62–72

    Article  Google Scholar 

  89. Ruedi T (1973) Fractures of the lower end of the tibia into the ankle joint: results 9 years after open reduction and internal fixation. Injury 5:130–134

    Article  CAS  PubMed  Google Scholar 

  90. Ruedi T (1989) The treatment of displaced metaphyseal fractures with screws and wiring systems. Orthopedics 12:55–59

    CAS  PubMed  Google Scholar 

  91. Ruedi T, Allgower M (1979) The operative treatment of intra-articular fractures of the lower end of the tibia. Clin Orthop Relat Res 138:105–110

    Google Scholar 

  92. Ruedi T, Matter P, Allgower M (1968) Intra-articular fractures of the distal tibial end. Helv Chir Acta 35:556–582

    CAS  PubMed  Google Scholar 

  93. Salton HL, Rush S, Schuberth J (2007) Tibial plafond fractures: limited incision reduction with percutaneous fixation. J Foot Ankle Surg 46:261–269

    Article  PubMed  Google Scholar 

  94. Schatzker J, Horne JG, Summer-Smith G (1975) The effect of movement on the holding power of screws in bone. Clin Orthop 111:257–262

    Article  Google Scholar 

  95. Schell H, Epari DR, Kassi JP, Bragulla H, Bail HJ, Duda GN (2005) The course of bone healing is influenced by the initial shear fixation stability. J Orthop Res 23:1022–1028

    Article  CAS  PubMed  Google Scholar 

  96. Schell H, Thompson MS, Bail HJ, Hoffmann J-E, Schill A, Duda GN, Lienau J (2008) Mechanical induction of critically delayed bone healing in sheep: radiological and biomechanical results. J Biomech 41:3066–3072

    Article  PubMed  Google Scholar 

  97. Schneider R, Faust G, Hindenlang U, Helwig P (2009) Inhomogeneous, orthotropic material model for the cortical structure of long bones modelled on the basis of clinical CT or density data. Comput Methods Appl Mech Eng 198:2167–2174

    Article  Google Scholar 

  98. Siegler S, Block J, Schneck CD (1988) The mechanical characteristics of the collateral ligaments of the human ankle joint. Foot Ankle 8:234–242

    Article  CAS  PubMed  Google Scholar 

  99. Simkin A (1982) Structural analysis of the human foot in standing posture. Tel Aviv University, Tel Aviv

    Google Scholar 

  100. Sirkin M, Sanders R, DiPasquale T, Herscovici D (1999) A staged protocol for soft tissue management in the treatment of complex pilon fractures. J Orthop Trauma 13:78–84

    Article  CAS  PubMed  Google Scholar 

  101. Sola J, Schoenecker PL, Gordon EJ (1999) External fixation of femoral shaft fractures in children: enhanced stability with the use of an auxiliary pin. J Pediatr Orthop 19:587–591

    CAS  PubMed  Google Scholar 

  102. Strube P, Sentuerk U, Riha T, Kaspar K, Mueller M, Kasper G, Matziolis G, Duda GN, Perka C (2008) Influence of age and mechanical stability on bone defect healing: age reverses mechanical effects. Bone 42:758–764

    Article  PubMed  Google Scholar 

  103. Tajdari M, Javadi M (2006) A new experimental procedure of evaluating the friction coefficient in elastic and plastic region. J Mater Process Technol 1-3:247–250

    Article  CAS  Google Scholar 

  104. Tao K, Wang D, Wang C, Wang X, Liu A, Nester CJ, Howard D (2009) An in vivo experimental validation of a computational model of human foot. J Bionic Eng 6:387–397

    Article  Google Scholar 

  105. Tarkin IS, Clare MP, Marcantonio A, Pape HC (2008) An update on the management of high-energy pilon fractures. Injury 39:142–154

    Article  CAS  PubMed  Google Scholar 

  106. Teeny S, Wiss DA, Hathaway R, Sarmiento A (1990) Tibial plafond fractures: errors, complications, and pitfalls in operative treatment. Orthop Trans 14:265–271

    Google Scholar 

  107. Turner CH, Wang T, Burr DB (2001) Shear strength and fatigue properties of human cortical bone determined from pure shear tests. Calcif Tissue Int 69:373–378

    Article  CAS  PubMed  Google Scholar 

  108. Uhthoff HK (1973) Mechanical factors influencing the holding power of screws in compact bone. J Bone Joint Surg 55B:633–639

    Article  Google Scholar 

  109. Wall OR, Pinder R, Faraj AA (2007) Ender's nail fixation of tibial pilon fractures—a safe, minimally invasive approach for high risk patients in a small district general hospital. Injury Extra 38:8

    Article  Google Scholar 

  110. Wang X, Allen MR, Burr DB, Lavernia EJ, Jeremic B, Fyhrie DP (2008) Identification of material parameters based on Mohr-Coulomb failure criterion for bisphosphonate treated canine vertebral cancellous bone. Bone 43:775–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Windolf M, Schwieger K, Ockert B, Jupiterm JB, Gradl G (2010) A novel non-bridging external fixator construct versus volar angular stable plating for the fixation of intra-articular fractures of the distal radius—a biomechanical study. Injury 41:204–209

    Article  PubMed  Google Scholar 

  112. Wolf S, Janousek A, Pfeil J, Veith W, Haas F, Duda G, Claes L (1998) The effects of external mechanical stimulation on the healing of diaphyseal osteotomies fixed by flexible external fixation. Clin Biomech 13:359–364

    Article  Google Scholar 

  113. Yosibash Z, Trabelsi N (2008) Subject-specific p-FE analysis of the proximal femur utilizing micromechanics-based material properties. Int J Multiscale Comput Eng 6:483–498

    Article  Google Scholar 

  114. Yosibash Z, Trabelsi N, Milgrom C (2007) Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations. J Biomech 40:3688–3699

    Article  PubMed  Google Scholar 

  115. Yu J, Cheung JT-M, Fan Y, Zhang Y, Leung AKL, Zhang M (2008) Development of a finite element model of female foot for high-heeled shoe design. Clin Biomech 23:S31–S38

    Article  Google Scholar 

  116. Zgonis T, Roukis TS, Polyzois V, Wukich DK (2006) Surgical management of the unstable diabetic Charcot deformity using the Taylor spatial frame. Oper Tech Orthop 16:10–17

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by research funding from Universiti Teknologi Malaysia (UTM) under grant of Potential Academic Staff (PAS) (Q.J130000.2745.02K78), Tier 1 (Q.J130000.2545.20H20), and (Q.J130000.2545.20H26) funding from the Ministry of Higher Education Malaysia under the Fundamental Research Grant Scheme (FRGS) grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Hanif Ramlee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramlee, M.H., Sulong, M.A., Garcia-Nieto, E. et al. Biomechanical features of six design of the delta external fixator for treating Pilon fracture: a finite element study. Med Biol Eng Comput 56, 1925–1938 (2018). https://doi.org/10.1007/s11517-018-1830-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-018-1830-3

Keywords

Navigation