Skip to main content

Advertisement

Log in

Effect of distal thickening and stiffening of plaque cap on arterial wall mechanics

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

To investigate the effect of longitudinal variations of cap thickness and tissue properties on wall stresses and strains along the atherosclerotic stenosis, stenotic plaque models (uniformly thick, distally thickened, homogenous, and distally stiffened) were constructed and subjected to computational stress analyses with due consideration of fluid–structure interactions (FSI). The analysis considered three different cap thicknesses—45, 65, and 200 μm—and tissue properties—soft, fibrous, and hard. The maximum peak cap stress (PCS) and strain were observed in the upstream throat section and demonstrated increases of the order of 345 and 190%, respectively, as the cap thickness was reduced from 200 to 45 μm in uniformly thick models. Distal stiffening increased PCS in the downstream region; however, the overall effect of this increase was rather small. Distal thickening did not affect maximum PCS and strain values for cap thicknesses exceeding 65 μm; however, a noticeable increase in maximum PCS and corresponding longitudinal variation (or spatial gradient) in stress was observed in the very thin (45-μm-thick) cap. It was, therefore, inferred that existence of a rather thin upstream cap demonstrating distal cap thickening indicates an increased risk of plaque progression and rupture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akyildiz AC, Speelman L, van Brummelen H, Gutiérrez MA, Virmani R, van der Lugt A, van der Steen AF, Wentzel JJ, Gijsen FJ (2011) Effects of intima stiffness and plaque morphology on peak cap stress. Biomed Eng Online 10:25

    Article  Google Scholar 

  2. Barrett SRH, Sutcliffe MPF, Howarth S, Li ZY, Gillard JH (2009) Experimental measurement of the mechanical properties of carotid atherothrombotic plaque fibrous cap. J Biomech 42:1650–1655

    Article  CAS  Google Scholar 

  3. Bathe KJ (1996) Finite Element Procedures. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  4. Bathe KJ (2002) Theory and Modeling Guide, Vols. I & II: ADINA and ADINA-F, ADINA R &D, Inc., Watertown, MA

  5. Bit A, Chattopadhyay H (2014) Assessment of rheological models for prediction of transport phenomena in stenosed artery. Prog Comput Fluid Dyn Int J 14:363–374

    Article  Google Scholar 

  6. Bit, A., Ghagare, D., Rizvanov, AA., Chattopadhyay, H. (2017). Assessment of influences of stenoses in right carotid artery on left carotid artery using wall stress marker. Biomed Res Int, 2017:2935195, 1, 13

  7. Bluestein D, Alemu Y, Avrahami I, Gharib M, Dumont K, Ricotta JJ, Einav S (2008) Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling. J Biomech 41:1111–1118

    Article  Google Scholar 

  8. Born GV, Richardson PD (1990) Mechanical properties of human atherosclerotic lesions. In: Pathobiology of the human atherosclerotic plaque. Springer, New York, pp 413–423

    Chapter  Google Scholar 

  9. Chatzizisis YS, Jonas M, Coskun AU, Beigel R, Stone BV, Maynard C, Gerrity RG, Daley W, Rogers C, Edelman ER, Feldman CL (2008) Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress. Circulation 117:993–1002

    Article  Google Scholar 

  10. Cheng GC, Loree HM, Kamm RD, Fishbein MC, Lee RT (1993) Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation. Circulation 87:1179–1187

    Article  CAS  Google Scholar 

  11. Cheng C, Tempel D, van Haperen R, van der Baan A, Grosveld F, Daemen MJ, Krams R, de Crom R (2006) Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 113:2744–2753

    Article  Google Scholar 

  12. Chhai P, Lee JH, Rhee K (2017) Effects of longitudinal asymmetric distribution of a lipid core on plaque wall stress. J Biomech Sci Eng 12:16-00588

    Article  Google Scholar 

  13. Cicha I, Wörner A, Urschel K, Beronov K, Goppelt-Struebe M, Verhoeven E, Daniel WG, Garlichs CD (2011) Carotid Plaque Vulnerability. Stroke 42:3502–3510

    Article  CAS  Google Scholar 

  14. Dirksen MT, van der Wal AC, van den Berg FM, van der Loos CM, Becker AE (1998) Distribution of inflammatory cells in atherosclerotic plaques relates to the direction of flow. Circulation 98:2000–2003

    Article  CAS  Google Scholar 

  15. Dolan JM, Kolega J, Meng H (2013) High wall shear stress and spatial gradients in vascular pathology: a review. Ann Biomed Eng 41:1411–1427

    Article  Google Scholar 

  16. Falk E (1989) Morphologic features of unstable atherothrombotic plaques underlying acute coronary syndromes. Am J Cardiol 63:E114–E120

    Article  Google Scholar 

  17. Finet G, Ohayon J, Rioufol G (2004) Biomechanical interaction between cap thickness, lipid core composition and blood pressure in vulnerable coronary plaque: impact on stability or instability. Coron Artery Dis 15:13–20

    Article  Google Scholar 

  18. Gijsen FJ, Wentzel JJ, Thury A, Mastik F, Schaar JA, Schuurbiers JC, Slager CJ, van der Giessen WJ, de Feyter PJ, van der Steen AF, Serruys PW (2008) Strain distribution over plaques in human coronary arteries relates to shear stress. Am J Phys Heart Circ Phys 295:H1608–H1614

    CAS  Google Scholar 

  19. Gijsen F, van der Giessen A, van der Steen A, Wentzel J (2013) Shear stress and advanced atherosclerosis in human coronary arteries. J Biomech 46:240–247

    Article  Google Scholar 

  20. Gradus-Pizlo I, Bigelow B, Mahomed Y, Sawada SG, Rieger K, Feigenbaum H (2003) Descending coronary Artery Wall thickness measured by high-frequency transthoracic and Epicardial echocardiography includes adventitia. Am J Cardiol 91:27–32

    Article  Google Scholar 

  21. Groen HC, Gijsen FJH, Van Der Lugt A, Ferguson MS, Hatsukami TS, Yuan C, van der Steen AFW, Wentzel JJ (2008) High shear stress influences plaque vulnerability. Neth Hear J 16:280–283

    Article  CAS  Google Scholar 

  22. Heiland VM, Forsell C, Roy J, Hedin U, Gasser TC (2013) Identification of carotid plaque tissue properties using an experimental–numerical approach. J Mech Behav Biomed Mater 27:226–238

    Article  Google Scholar 

  23. Holzapfel GA, Sommer G, Gasser CT, Regitnig P (2005) Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am J Phys Heart Circ Phys 289:H2048–H2058

    CAS  Google Scholar 

  24. Hoshino T, Chow LA, Hsu JJ, Perlowski AA, Abedin M, Tobis J, Tintut Y, Mal AK, Klug WS Demer LL (2009) Mechanical stress analysis of a rigid inclusion in distensible material: a model of atherosclerotic calcification and plaque vulnerability. Am J Phys Heart Circ Phys 297:H802–H810

    CAS  Google Scholar 

  25. Kelly-Arnold A, Maldonado N, Laudier D, Aikawa E, Cardoso L, Weinbaum S (2013) Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc Natl Acad Sci 110:10741–10746

    Article  CAS  Google Scholar 

  26. Kural MH, Cai M, Tang D, Gwyther T, Zheng J, Billiar KL (2012) Planar biaxial characterization of diseased human coronary and carotid arteries for computational modeling. J Biomech 45:790–798

    Article  Google Scholar 

  27. Lee RT, Grodzinsky AJ, Frank EH, Kamm RD, Schoen FJ (1991) Structure-dependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques. Circulation 83:1764–1770

    Article  CAS  Google Scholar 

  28. Lee RT, Schoen FJ, Loree HM, Lark MW, Libby P (1996) Circumferential stress and matrix metalloproteinase 1 in human coronary atherosclerosis. Arterioscler Thromb Vasc Biol 16:1070–1073

    Article  CAS  Google Scholar 

  29. Lendon CL, Davies MJ, Born GVR, Richardson PD (1991) Atherosclerotic plaque caps are locally weakened when macrophages density is increased. Atherosclerosis 87:87–90

    Article  CAS  Google Scholar 

  30. Lendon CL, Davies MJ, Richardson PD, Born GVR (1993) Testing of small connective tissue specimens for the determination of the mechanical behaviour of atherosclerotic plaques. J Biomed Eng 15:27–33

    Article  CAS  Google Scholar 

  31. Li ZY, Howarth SP, Tang T, Gillard JH (2006) How critical is fibrous cap thickness to carotid plaque stability? A flow plaque interaction model. Stroke 37:1195–1199

    Article  Google Scholar 

  32. Li ZY, Taviani V, Tang T, Sadat U, Young V, Patterson A, Graves M, Gillard JH (2009) The mechanical triggers of plaque rupture: shear stress vs pressure gradient. Br J Radiol 82:S39–S45

    Article  Google Scholar 

  33. Lindstedt KA, Leskinen MJ, Kovanen PT (2004) Proteolysis of the Pericellular matrix. Arterioscler Thromb Vasc Biol 24:1350–1358

    Article  CAS  Google Scholar 

  34. Loree HM, Kamm RD, Stringfellow RG, Lee RT (1992) Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res 71:850–858

    Article  CAS  Google Scholar 

  35. Loree HM, Tobias BJ, Gibson LJ, Kamm RD, Small DM, Lee RT (1994) Mechanical properties of model atherosclerotic lesion lipid pools. Arterioscler Thromb Vasc Biol 14:230–234

    Article  CAS  Google Scholar 

  36. Marques KM, Spruijt HJ, Boer C, Westerhof N, Visser CA, Visser FC (2002) The diastolic flow-pressure gradient relation in coronary stenoses in humans. J Am Coll Cardiol 39:1630–1636

    Article  Google Scholar 

  37. Moreno PR, Purushothaman KR, Fuster V, O’connor WN (2002) Intimomedial interface damage and adventitial inflammation is increased beneath disrupted atherosclerosis in the aorta. Circulation 105:2504–2511

    Article  Google Scholar 

  38. Nieuwstadt HA, Akyildiz AC, Speelman L, Virmani R, van der Lugt A, van der Steen AFW, Wentzel JJ, Gijsen FJH (2013) The influence of axial image resolution on atherosclerotic plaque stress computations. J Biomech 46:689–695

    Article  CAS  Google Scholar 

  39. Ohayon J, Dubreuil O, Tracqui P, Le Floc'h S, Rioufol G, Chalabreysse L, Thivolet F, Pettigrew RI, Finet G (2007) Influence of residual stress/strain on the biomechanical stability of vulnerable coronary plaques: potential impact for evaluating the risk of plaque rupture. Am J Phys Heart Circ Phys 293:H1987-H1996

  40. Qiu J, Zheng Y, Hu J, Liao D, Gregersen H, Deng X, Fan Y, Wang G (2014) Biomechanical regulation of vascular smooth muscle cell functions: from in vitro to in vivo understanding. J R Soc Interface 11:20130852

    Article  Google Scholar 

  41. Richardson PD, Davies MJ, Born GVR (1989) Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 334:941–944

    Article  Google Scholar 

  42. Samady H, Eshtehardi P, McDaniel MC, Suo J, Dhawan SS, Maynard C, Timmins LH, Quyyumi AA, Giddens DP (2011) Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation 124:779–788

    Article  CAS  Google Scholar 

  43. Schaar JA, De Korte CL, Mastik F, Strijder C, Pasterkamp G, Boersma E, Serruys PW, Van Der Steen AF (2003) Characterizing vulnerable plaque features with intravascular elastography. Circulation 108:2636–2641

    Article  Google Scholar 

  44. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, Mehran R, McPherson J, Farhat N, Marso SP, Parise H (2011) A prospective natural-history study of coronary atherosclerosis. N Engl J Med 364:226–235

    Article  CAS  Google Scholar 

  45. Suo J, Ferrara DE, Sorescu D, Guldberg RE, Taylor WR, Giddens DP (2007) Hemodynamic shear stresses in mouse aortas. Arterioscler Thromb Vasc Biol 27:346–351

    Article  CAS  Google Scholar 

  46. Tang D, Yang C, Kobayashi S, Zheng J, Vito RP (2003) Effect of stenosis asymmetry on blood flow and artery compression: a three-dimensional fluid-structure interaction model. Ann Biomed Eng 31:1182–1193

    Article  Google Scholar 

  47. Tang D, Yang C, Kobayashi S, Zheng J, Woodard PK, Teng Z, Billiar K, Bach R, Ku DN (2009) 3D MRI-based anisotropic FSI models with cyclic bending for human coronary atherosclerotic plaque mechanical analysis. J Biomech Eng 131:061010

    Article  Google Scholar 

  48. Tang D, Kamm RD, Yang C, Zheng J, Canton G, Bach R, Huang X, Hatsukami TS, Zhu J, Ma G, Maehara A (2014) Image-based modeling for better understanding and assessment of atherosclerotic plaque progression and vulnerability: data, modeling, validation, uncertainty and predictions. J Biomech 47:834–846

    Article  Google Scholar 

  49. Teng Z, Zhang Y, Huang Y, Feng J, Yuan J, Lu Q, Sutcliffe MPF, Brown AJ, Jing Z, Gillard JH (2014) Material properties of components in human carotid atherosclerotic plaques: a uniaxial extension study. Acta Biomater 10:5055–5063

    Article  CAS  Google Scholar 

  50. Tracqui P, Broisat A, Toczek J, Mesnier N, Ohayon J, Riou L (2011) Mapping elasticity moduli of atherosclerotic plaque in situ via atomic force microscopy. J Struct Biol 174:115–123

    Article  Google Scholar 

  51. Tricot O, Mallat Z, Heymes C, Belmin J, Leseche G, Tedgui A (2000) Relation between endothelial cell apoptosis and blood flow direction in human atherosclerotic plaques. Circulation 101:2450–2453

    Article  CAS  Google Scholar 

  52. Virmani R, Kolodgie FD, Burke AP, Schwartz SM (2000) Lesions from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Bio 20:1262–1275

    Article  CAS  Google Scholar 

  53. Wang L, Zheng J, Maehara A, Yang C, Billiar KL, Wu Z, Bach R, Muccigrosso D, Mintz GS, Tang D (2015) Morphological and stress vulnerability indices for human coronary plaques and their correlations with cap thickness and lipid percent: an IVUS-based fluid-structure interaction multi-patient study. PLoS Comput Biol 11:e1004652

    Article  Google Scholar 

  54. Williamson SD, Lam Y, Younis HF, Huang H, Patel S, Kaazempur-Mofrad MR, Kamm RD (2003) On the sensitivity of wall stresses in diseased arteries to variable material properties. J Biomech Eng 125:147–155

    Article  CAS  Google Scholar 

  55. Yang C, Canton G, Yuan C, Ferguson M, Hatsukami TS, Tang D (2010) Advanced human carotid plaque progression correlates positively with flow shear stress using follow-up scan data: an in vivo MRI multi-patient 3D FSI study. J Biomech 43:2530–2538

    Article  Google Scholar 

  56. Yilmaz A, Lipfert B, Cicha I, Schubert K, Klein M, Raithel D, Daniel WG, Garlichs CD (2007) Accumulation of immune cells and high expression of chemokines/chemokine receptors in the upstream shoulder of atherosclerotic carotid plaques. Exp Mol Pathol 82:245–255

    Article  CAS  Google Scholar 

  57. Yuan J, Teng Z, Feng J, Zhang Y, Brown AJ, Gillard JH, Jing Z, Lu Q (2015) Influence of material property variability on the mechanical behaviour of carotid atherosclerotic plaques: a 3D fluid-structure interaction analysis. Int J Numer Methods Biomed Eng 31:e02722

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by research fund NRF-2017R1A2B4004439.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyehan Rhee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhai, P., Rhee, K. Effect of distal thickening and stiffening of plaque cap on arterial wall mechanics. Med Biol Eng Comput 56, 2003–2013 (2018). https://doi.org/10.1007/s11517-018-1839-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-018-1839-7

Keywords