Skip to main content
Log in

Soft tissue deformation modelling through neural dynamics-based reaction-diffusion mechanics

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Soft tissue deformation modelling forms the basis of development of surgical simulation, surgical planning and robotic-assisted minimally invasive surgery. This paper presents a new methodology for modelling of soft tissue deformation based on reaction-diffusion mechanics via neural dynamics. The potential energy stored in soft tissues due to a mechanical load to deform tissues away from their rest state is treated as the equivalent transmembrane potential energy, and it is distributed in the tissue masses in the manner of reaction-diffusion propagation of nonlinear electrical waves. The reaction-diffusion propagation of mechanical potential energy and nonrigid mechanics of motion are combined to model soft tissue deformation and its dynamics, both of which are further formulated as the dynamics of cellular neural networks to achieve real-time computational performance. The proposed methodology is implemented with a haptic device for interactive soft tissue deformation with force feedback. Experimental results demonstrate that the proposed methodology exhibits nonlinear force-displacement relationship for nonlinear soft tissue deformation. Homogeneous, anisotropic and heterogeneous soft tissue material properties can be modelled through the inherent physical properties of mass points.

Soft tissue deformation modelling with haptic feedback via neural dynamics-based reaction-diffusion mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bro-Nielsen M (1998) Finite element modeling in surgery simulation. Proc IEEE 86:490–503

    Article  Google Scholar 

  2. Zhang J, Zhong Y, Gu C (2018) Deformable models for surgical simulation: a survey. IEEE Rev Biomed Eng:1–1

  3. Miller K (2016) Computational biomechanics for patient-specific applications. Ann Biomed Eng 44:1–2

    Article  Google Scholar 

  4. Cover SA, Ezquerra NF, O’Brien JF, Rowe R, Gadacz T, Palm E (1993) Interactively deformable models for surgery simulation. IEEE Comput Graph Appl 13:68–75

    Article  Google Scholar 

  5. CaniGascuel M, Desbrun M (1997) Animation of deformable models using implicit surfaces. IEEE Trans Vis Comput Graph 3:39–50

    Article  Google Scholar 

  6. Duan Y, Huang W, Chang H, Chen W, Zhou J, Teo SK, Su Y, Chui CK, Chang S (2016) Volume preserved mass-spring model with novel constraints for soft tissue deformation. IEEE J Biomed Health Inform 20:268–280

    Article  Google Scholar 

  7. Frisken-Gibson SF (1997) 3D ChainMail: a fast algorithm for deforming volumetric objects, Proceedings of the Symposium on Interactive 3D graphics, 149–154

  8. Zhang J, Zhong Y, Smith J, Gu C (2016) A new ChainMail approach for real-time soft tissue simulation. Bioengineered 7:246–252

    Article  CAS  Google Scholar 

  9. Zhang J, Zhong Y, Gu C (2017) Ellipsoid bounding region-based ChainMail algorithm for soft tissue deformation in surgical simulation. Int J Interact Des Manuf (IJIDeM)

  10. Zhang J, Zhong Y, Smith J, Gu C (2017) ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation. Technol Health Care 25:231–239

    Article  Google Scholar 

  11. Camara M, Mayer E, Darzi A, Pratt P (2016) Soft tissue deformation for surgical simulation: a position-based dynamics approach. Int J Comput Assist Radiol Surg 11:919–928

    Article  Google Scholar 

  12. Misra S, Ramesh KT, Okamura AM (2008) Modeling of tool-tissue interactions for computer-based surgical simulation: a literature review. Presence Teleop Virt 17:463–491

    Article  Google Scholar 

  13. Cotin S, Delingette H, Ayache N (1999) Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans Vis Comput Graph 5:62–73

    Article  Google Scholar 

  14. Wu W, Heng PA (2005) An improved scheme of an interactive finite element model for 3D soft-tissue cutting and deformation. Vis Comput 21:707–716

    Article  Google Scholar 

  15. Weber D, Mueller-Roemer J, Altenhofen C, Stork A, Fellner D (2015) Deformation simulation using cubic finite elements and efficient p-multigrid methods. Comput Graph-Uk 53 (185–195

    Article  Google Scholar 

  16. Yang C, Li S, Lan Y, Wang L, Hao A, Qin H (2016) Coupling time-varying modal analysis and FEM for real-time cutting simulation of objects with multi-material sub-domains. Comput Aided Geom Des 43:53–67

    Article  Google Scholar 

  17. Huang J, Liu X, Bao H, Guo B, Shum H-Y (2006) An efficient large deformation method using domain decomposition. Comput Graph-Uk 30:927–935

    Article  Google Scholar 

  18. Strbac V, Sloten JV, Famaey N (2015) Analyzing the potential of GPGPUs for real-time explicit finite element analysis of soft tissue deformation using CUDA. Finite Elem Anal Des 105:79–89

    Article  Google Scholar 

  19. Cotin S, Delingette H, Ayache N (2000) A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training and simulation. Vis Comput 16:437–452

    Article  Google Scholar 

  20. Zhu B, Gu L (2012) A hybrid deformable model for real-time surgical simulation. Comput Med Imaging Graph 36:356–365

    Article  Google Scholar 

  21. Zhang GY, Wittek A, Joldes GR, Jin X, Miller K (2014) A three-dimensional nonlinear meshfree algorithm for simulating mechanical responses of soft tissue. Eng Anal Bound Elem 42:60–66

    Article  Google Scholar 

  22. Courtecuisse H, Allard J, Kerfriden P, Bordas SPA, Cotin S, Duriez C (2014) Real-time simulation of contact and cutting of heterogeneous soft-tissues. Med Image Anal 18:394–410

    Article  Google Scholar 

  23. Xu S, Liu X, Zhang H, Hu L (2011) A nonlinear viscoelastic tensor-mass visual model for surgery simulation. IEEE Trans Instrum Meas 60:14–20

    Article  Google Scholar 

  24. Dick C, Georgii J, Westermann R (2011) A real-time multigrid finite hexahedra method for elasticity simulation using CUDA. Simul Model Pract Theory 19:801–816

    Article  Google Scholar 

  25. Miller K, Joldes G, Lance D, Wittek A (2007) Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Int J Numer Method Biomed Eng 23:121–134

    Google Scholar 

  26. Johnsen SF, Taylor ZA, Clarkson MJ, Hipwell J, Modat M, Eiben B, Han L, Hu Y, Mertzanidou T, Hawkes DJ, Ourselin S (2015) NiftySim: a GPU-based nonlinear finite element package for simulation of soft tissue biomechanics. Int J Comput Assist Radiol Surg 10:1077–1095

    Article  Google Scholar 

  27. Goulette F, Chen Z-W (2015) Fast computation of soft tissue deformations in real-time simulation with hyper-elastic mass links. Comput Methods Appl Mech Eng 295:18–38

    Article  Google Scholar 

  28. Zhong Y, Shirinzadeh B, Smith J (2008) Reaction-diffusion based deformable object simulation. Int J Image Graph 8:265–280

    Article  Google Scholar 

  29. Sadd MH (2009) Elasticity: theory, applications, and numerics, Academic Press

  30. Keldermann R, Nash M, Panfilov A (2009) Modeling cardiac mechano-electrical feedback using reaction-diffusion-mechanics systems. Physica D 238:1000–1007

    Article  CAS  Google Scholar 

  31. Keldermann RH, Nash MP, Gelderblom H, Wang VY, Panfilov AV (2010) Electromechanical wavebreak in a model of the human left ventricle. Am J Phys Heart Circ Phys 299:H134–H143

    CAS  Google Scholar 

  32. Gizzi A, Cherubini C, Filippi S, Pandolfi A (2015) Theoretical and numerical modeling of nonlinear electromechanics with applications to biological active media. Commun Comput Phys 17:93–126

    Article  Google Scholar 

  33. Murray JD (2002) Mathematical biology I: an introduction, vol. 17 of Interdisciplinary Applied Mathematics. Springer, New York

    Google Scholar 

  34. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    Article  CAS  Google Scholar 

  35. Luo C-h, Rudy Y (1994) A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res 74:1071–1096

    Article  CAS  Google Scholar 

  36. Noble D (1962) A modification of the Hodgkin–Huxley equations applicable to Purkinje fibre action and pacemaker potentials. J Physiol 160:317–352

    Article  CAS  Google Scholar 

  37. Chua LO, Roska T (1993) The CNN paradigm. IEEE Trans Circuits Syst I, Fundam Theory Appl 40:147–156

    Article  Google Scholar 

  38. Thiran P, Setti G, Hasler M (1998) An approach to information propagation in 1-D cellular neural networks—part I: local diffusion. IEEE Trans Circuits Syst I, Fundam Theory Appl 45:777–789

    Article  Google Scholar 

  39. Setti G, Thiran P, Serpico C (1998) An approach to information propagation in 1-D cellular neural networks—part II: global propagation. IEEE Trans Circuits Syst I, Fundam Theory Appl 45:790–811

    Article  Google Scholar 

  40. Kozek T, Chua LO, Roska T, Wolf D, Tetzlaff R, Puffer F, Lotz K (1995) Simulating nonlinear waves and partial differential equations via CNN—part II: typical examples. IEEE Trans Circuits Syst I, Fundam Theory Appl 42:816–820

    Article  Google Scholar 

  41. Szolgay P, Vörös G, Erőss G (1993) On the applications of the cellular neural network paradigm in mechanical vibrating systems. IEEE Trans Circuits Syst I, Fundam Theory Appl 40:222–227

    Article  Google Scholar 

  42. Chua LO, Yang L (1988) Cellular neural networks: theory. IEEE Trans Circuits Syst 35:1257–1272

    Article  Google Scholar 

  43. Vijayan P, Kallinderis Y (1994) A 3D finite-volume scheme for the Euler equations on adaptive tetrahedral grids. J Comput Phys 113:249–267

    Article  Google Scholar 

  44. Chua LO, Hasler M, Moschytz GS, Neirynck J (1995) Autonomous cellular neural networks: a unified paradigm for pattern formation and active wave propagation. IEEE Trans Circuits Syst I, Fundam Theory Appl 42:559–577

    Article  Google Scholar 

  45. Fung Y-C (1993) Biomechanics: mechanical properties of living tissues, Springer-Verlag

  46. Taylor ZA, Cheng M, Ourselin S (2008) High-speed nonlinear finite element analysis for surgical simulation using graphics processing units. IEEE Trans Med Imaging 27:650–663

    Article  CAS  Google Scholar 

  47. Sparks JL, Vavalle NA, Kasting KE, Long B, Tanaka ML, Sanger PA, Schnell K, Conner-Kerr TA (2015) Use of silicone materials to simulate tissue biomechanics as related to deep tissue injury. Adv Skin Wound Care 28:59–68

    Article  Google Scholar 

  48. Jingya Z, Jiajun W, Xiuying W, Dagan F (2014) The adaptive FEM elastic model for medical image registration. Phys Med Biol 59:97–118

    Article  Google Scholar 

  49. Misra J, Saha I (2010) Artificial neural networks in hardware a survey of two decades of progress. Neurocomputing 74:239–255

    Article  Google Scholar 

  50. Ullah Z, Augarde CE (2013) Finite deformation elasto-plastic modelling using an adaptive meshless method. Comput Struct 118:39–52

    Article  Google Scholar 

  51. Picinbono G, Lombardo JC, Delingette H, Ayache N (2002) Improving realism of a surgery simulator: linear anisotropic elasticity, complex interactions and force extrapolation. J Vis Comput Animat 13:147–167

    Article  Google Scholar 

  52. Xia P (2016) New advances for haptic rendering: state of the art. Vis Comput:1–17

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhong, Y. & Gu, C. Soft tissue deformation modelling through neural dynamics-based reaction-diffusion mechanics. Med Biol Eng Comput 56, 2163–2176 (2018). https://doi.org/10.1007/s11517-018-1849-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-018-1849-5

Keywords

Navigation