Abstract
This study aims at presenting a nonlinear, recursive, multivariate prediction model of the subcutaneous glucose concentration in type 1 diabetes. Nonlinear regression is performed in a reproducing kernel Hilbert space, by either the fixed budget quantized kernel least mean square (QKLMS-FB) or the approximate linear dependency kernel recursive least-squares (KRLS-ALD) algorithm, such that a sparse model structure is accomplished. A multivariate feature set (i.e., subcutaneous glucose, food carbohydrates, insulin regime and physical activity) is used and its influence on short-term glucose prediction is investigated. The method is evaluated using data from 15 patients with type 1 diabetes in free-living conditions. In the case when all the input variables are considered: (i) the average root mean squared error (RMSE) of QKLMS-FB increases from 13.1 mg dL−1 (mean absolute percentage error (MAPE) 6.6%) for a 15-min prediction horizon (PH) to 37.7 mg dL−1 (MAPE 20.8%) for a 60-min PH and (ii) the RMSE of KRLS-ALD, being predictably lower, increases from 10.5 mg dL−1 (MAPE 5.2%) for a 15-min PH to 31.8 mg dL−1 (MAPE 18.0%) for a 60-min PH. Multivariate data improve systematically both the regularity and the time lag of the predictions, reducing the errors in critical glucose value regions for a PH ≥ 30 min.

ᅟ






Similar content being viewed by others
References
Cescon M, Johansson R, Renard E (2015) Subspace-based linear multi-step predictors in type 1 diabetes mellitus. Biomed Signal Process Control 22:99–110. https://doi.org/10.1016/j.bspc.2014.09.012
Chen BD, Zhao SL, Zhu PP, Principe JC (2012) Quantized kernel least mean square algorithm. Ieee T Neur Net Lear 23:22–32. https://doi.org/10.1109/Tnnls.2011.2178446
Cryer PE (2009) Exercise-related hypoglycemia-associated autonomic failure in diabetes. Diabetes 58:1951–1952. https://doi.org/10.2337/db09-0834
Daskalaki E, Prountzou A, Diem P, Mougiakakou SG (2012) Real-time adaptive models for the personalized prediction of glycemic profile in type 1 diabetes patients. Diabetes Technol Ther 14:168–174. https://doi.org/10.1089/dia.2011.0093
Engel Y, Mannor S, Meir R (2004) The kernel recursive least-squares algorithm. Ieee T Signal Proces 52:2275–2285. https://doi.org/10.1109/Tsp.2004.830985
Eren-Oruklu M, Cinar A, Quinn L, Smith D (2009) Estimation of future glucose concentrations with subject-specific recursive linear models. Diabetes Technol Ther 11:243–253. https://doi.org/10.1089/dia.2008.0065
Eren-Oruklu M, Cinar A, Rollins DK, Quinn L (2012) Adaptive system identification for estimating future glucose concentrations and hypoglycemia alarms. Automatica 48:1892–1897. https://doi.org/10.1016/j.automatica.2012.05.076
Facchinetti A, Sparacino G, Trifoglio E, Cobelli C (2011) A new index to optimally design and compare continuous glucose monitoring glucose prediction algorithms. Diabetes Technol Ther 13:111–119. https://doi.org/10.1089/dia.2010.0151
Finan DA, Doyle FJ 3rd, Palerm CC, Bevier WC, Zisser HC, Jovanovic L, Seborg DE (2009) Experimental evaluation of a recursive model identification technique for type 1 diabetes. J Diabetes Sci Technol 3:1192–1202
Finan DA, Palerm CC, Doyle FJ, Seborg DE, Zisser H, Bevier WC, Jovanovič L (2009) Effect of input excitation on the quality of empirical dynamic models for type 1 diabetes. AICHE J 55:1135–1146. https://doi.org/10.1002/aic.11699
Gani A, Gribok AV, Lu Y, Ward WK, Vigersky RA, Reifman J (2010) Universal glucose models for predicting subcutaneous glucose concentration in humans. IEEE Trans Inf Technol Biomed 14:157–165. https://doi.org/10.1109/TITB.2009.2034141
Gani A, Gribok AV, Rajaraman S, Ward WK, Reifman J (2009) Predicting subcutaneous glucose concentration in humans: data-driven glucose modeling. IEEE Trans Biomed Eng 56:246–254. https://doi.org/10.1109/TBME.2008.2005937
Georga E, Protopappas V, Guillen A, Fico G, Ardigo D, Arredondo MT, Exarchos TP, Polyzos D, Fotiadis DI (2009) Data mining for blood glucose prediction and knowledge discovery in diabetic patients: the METABO diabetes modeling and management system. Conf Proc IEEE Eng Med Biol Soc 2009:5633–5636. https://doi.org/10.1109/IEMBS.2009.5333635
Georga EI, Principe JC, Polyzos D, Fotiadis DI (2016) Non-linear dynamic modeling of glucose in type 1 diabetes with kernel adaptive filters. Conf Proc IEEE Eng Med Biol Soc, 16–20 Aug 2016. pp 5897–5900. doi:https://doi.org/10.1109/EMBC.2016.7592070
Georga EI, Príncipe JC, Rizos EC, Fotiadis DI (2017) Kernel-based adaptive learning improves accuracy of glucose predictive modelling in type 1 diabetes: a proof-of-concept study. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 11–15 July 2017. pp 2765–2768. doi:https://doi.org/10.1109/EMBC.2017.8037430
Georga EI, Protopappas VC, Ardigò D, Marina M, Zavaroni I, Polyzos D, Fotiadis DI (2013) Multivariate prediction of subcutaneous glucose concentration in type 1 diabetes patients based on support vector regression. IEEE J Biomed Health Inform 17:71–81. https://doi.org/10.1109/TITB.2012.2219876
Georga EI, Protopappas VC, Ardigo D, Polyzos D, Fotiadis DI (2013) A glucose model based on support vector regression for the prediction of hypoglycemic events under free-living conditions. Diabetes Technol Ther 15:634–643. https://doi.org/10.1089/dia.2012.0285
Georga EI, Protopappas VC, Polyzos D, Fotiadis DI (2015) Evaluation of short-term predictors of glucose concentration in type 1 diabetes combining feature ranking with regression models. Med Biol Eng Comput 53:1305–1318. https://doi.org/10.1007/s11517-015-1263-1
Glucose concentrations of less than 3.0 mmol/L (54 mg/dL) should be reported in clinical Trials: a joint position statement of the American Diabetes Association and the European Association for the Study of Diabetes (2017). Diabetes care 40:155–157. doi:https://doi.org/10.2337/dc16-2215
Kovatchev B, Clarke W (2008) Peculiarities of the continuous glucose monitoring data stream and their impact on developing closed-loop control technology. J Diabetes Sci Technol 2:158–163
Kovatchev BP, Gonder-Frederick LA, Cox DJ, Clarke WL (2004) Evaluating the accuracy of continuous glucose-monitoring sensors: continuous glucose-error grid analysis illustrated by TheraSense freestyle navigator data. Diabetes Care 27:1922–1928
Lehmann ED, Deutsch T (1992) A physiological model of glucose-insulin interaction in type 1 diabetes mellitus. J Biomed Eng 14:235–242
Li K, Principe JC (2016) The kernel adaptive autoregressive-moving-average algorithm. IEEE Trans Neural Netw Learn Syst 27:334–346. https://doi.org/10.1109/TNNLS.2015.2418323
Li K, Príncipe JC (2017) Transfer learning in adaptive filters: the nearest instance centroid-estimation kernel least-mean-square algorithm. Ieee T Signal Proces 65:6520–6535. https://doi.org/10.1109/TSP.2017.2752695
Liu W, Park I, Principe JC (2009) An information theoretic approach of designing sparse kernel adaptive filters. IEEE Trans Neural Netw 20:1950–1961. https://doi.org/10.1109/TNN.2009.2033676
Liu W, Príncipe JC, Haykin S (2010) Background and preview. In: Kernel Adaptive Filtering. John Wiley & Sons, Inc., pp 1–26. doi:https://doi.org/10.1002/9780470608593.ch1
Liu W, Príncipe JC, Haykin S (2010) Extended kernel recursive least-squares algorithm. In: Kernel Adaptive Filtering. John Wiley & Sons, Inc., pp 124–151. doi:https://doi.org/10.1002/9780470608593.ch5
Liu W, Príncipe JC, Haykin S (2010) Kernel recursive least-squares algorithm. In: Kernel Adaptive Filtering. John Wiley & Sons, Inc., pp 94–123. doi:https://doi.org/10.1002/9780470608593.ch4
Naumova V, Pereverzyev SV, Sivananthan S (2012) A meta-learning approach to the regularized learning-case study: blood glucose prediction. Neural Networks 33:181–193. https://doi.org/10.1016/j.neunet.2012.05.004
Oviedo S, Vehi J, Calm R, Armengol J (2017) A review of personalized blood glucose prediction strategies for T1DM patients. 33. doi:https://doi.org/10.1002/cnm.2833
Pappada SM, Cameron BD, Rosman PM, Bourey RE, Papadimos TJ, Olorunto W, Borst MJ (2011) Neural network-based real-time prediction of glucose in patients with insulin-dependent diabetes. Diabetes Technol Ther 13:135–141. https://doi.org/10.1089/dia.2010.0104
Perez-Gandia C, Facchinetti A, Sparacino G, Cobelli C, Gomez EJ, Rigla M, de Leiva A, Hernando ME (2010) Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring. Diabetes Technol Ther 12:81–88. https://doi.org/10.1089/dia.2009.0076
Pokharel R, Seth S, Principe JC Mixture kernel least mean square. In: The 2013 International Joint Conference on Neural Networks (IJCNN), 4–9 Aug. 2013 2013. pp 1–7. doi:https://doi.org/10.1109/IJCNN.2013.6706867
Reifman J, Rajaraman S, Gribok A, Ward WK (2007) Predictive monitoring for improved management of glucose levels. J Diabetes Sci Technol 1:478–486
Shrayyef MZ, Gerich JE (2010) Normal glucose homeostasis. In: Poretsky L (ed) Principles of diabetes mellitus. Springer US, Boston, pp 19–35. https://doi.org/10.1007/978-0-387-09841-8_2
Sparacino G, Zanderigo F, Corazza S, Maran A, Facchinetti A, Cobelli C (2007) Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensior time-series. IEEE Trans Biomed Eng 54:931–937. https://doi.org/10.1109/Tbme.2006.889774
Stahl F, Johansson R (2009) Diabetes mellitus modeling and short-term prediction based on blood glucose measurements. Math Biosci 217:101–117. https://doi.org/10.1016/j.mbs.2008.10.008
Tarin C, Teufel E, Pico J, Bondia J, Pfleiderer HJ (2005) Comprehensive pharmacokinetic model of insulin glargine and other insulin formulations. IEEE Trans Biomed Eng 52:1994–2005. https://doi.org/10.1109/TBME.2005.857681
Turksoy K, Bayrak ES, Quinn L, Littlejohn E, Rollins D, Cinar A (2013) Hypoglycemia early alarm systems based on multivariable models. Ind Eng Chem Res 52:12329–12336. https://doi.org/10.1021/ie3034015
Turksoy K, Quinn L, Littlejohn E, Cinar A (2014) Multivariable adaptive identification and control for artificial pancreas systems. IEEE Trans Biomed Eng 61:883–891. https://doi.org/10.1109/TBME.2013.2291777
Vaerenbergh SV, Santamaría I A comparative study of kernel adaptive filtering algorithms. In: 2013 IEEE Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), 11–14 Aug. 2013 2013. pp 181–186. doi:https://doi.org/10.1109/DSP-SPE.2013.6642587
Wang Q, Molenaar P, Harsh S, Freeman K, Xie J, Gold C, Rovine M, Ulbrecht J (2014) Personalized state-space modeling of glucose dynamics for type 1 diabetes using continuously monitored glucose, insulin dose, and meal intake: an extended Kalman filter approach. J Diabetes Sci Technol 8:331–345. https://doi.org/10.1177/1932296814524080
Wang Y, Wu X, Mo X (2013) A novel adaptive-weighted-average framework for blood glucose prediction. Diabetes Technol Ther 15:792–801. https://doi.org/10.1089/dia.2013.0104
Yu X, Turksoy K, Rashid M, Feng J, Hobbs N, Hajizadeh I, Samadi S, Sevil M, Lazaro C, Maloney Z, Littlejohn E, Quinn L, Cinar A (2018) Model-fusion-based online glucose concentration predictions in people with type 1 diabetes. Control Eng Pract 71:129–141. https://doi.org/10.1016/j.conengprac.2017.10.013
Zarkogianni K, Mitsis K, Litsa E, Arredondo MT, Ficomicron G, Fioravanti A, Nikita KS (2015) Comparative assessment of glucose prediction models for patients with type 1 diabetes mellitus applying sensors for glucose and physical activity monitoring. Med Biol Eng Comput 53:1333–1343. https://doi.org/10.1007/s11517-015-1320-9
Zecchin C, Facchinetti A, Sparacino G, Cobelli C (2014) Jump neural network for online short-time prediction of blood glucose from continuous monitoring sensors and meal information. Comput Methods Prog Biomed 113:144–152. https://doi.org/10.1016/j.cmpb.2013.09.016
Zecchin C, Facchinetti A, Sparacino G, Cobelli C (2016) How much is short-term glucose prediction in type 1 diabetes improved by adding insulin delivery and meal content information to CGM data? A proof-of-concept study. J Diabetes Sci Technol 10:1149–1160. https://doi.org/10.1177/1932296816654161
Zecchin C, Facchinetti A, Sparacino G, De Nicolao G, Cobelli C (2012) Neural network incorporating meal information improves accuracy of short-time prediction of glucose concentration. IEEE Trans Biomed Eng 59:1550–1560. https://doi.org/10.1109/TBME.2012.2188893
Zhao C, Dassau E, Jovanovic L, Zisser HC, Doyle FJ 3rd, Seborg DE (2012) Predicting subcutaneous glucose concentration using a latent-variable-based statistical method for type 1 diabetes mellitus. J Diabetes Sci Technol 6:617–633
Zhao C, Sun Y, Zhao L (2013) Interindividual glucose dynamics in different frequency bands for online prediction of subcutaneous glucose concentration in type 1 diabetic subjects. AICHE J 59:4228–4240. https://doi.org/10.1002/aic.14176
Zhao C, Yu C (2015) Rapid model identification for online subcutaneous glucose concentration prediction for new subjects with type I diabetes. IEEE Trans Biomed Eng 62:1333–1344. https://doi.org/10.1109/TBME.2014.2387293
Zhao SL, Chen BD, Zhu PP, Principe JC (2013) Fixed budget quantized kernel least-mean-square algorithm. Signal Process 93:2759–2770. https://doi.org/10.1016/j.sigpro.2013.02.012
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.
Informed consent
Informed consent was obtained from all individual participants included in the study.
Electronic supplementary material
ESM 1
(DOCX 16 kb)
Appendices
Appendix 1.

Appendix 2.

Rights and permissions
About this article
Cite this article
Georga, E.I., Príncipe, J.C. & Fotiadis, D.I. Short-term prediction of glucose in type 1 diabetes using kernel adaptive filters. Med Biol Eng Comput 57, 27–46 (2019). https://doi.org/10.1007/s11517-018-1859-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11517-018-1859-3