Abstract
Artificial pancreas system (APS) is a viable option to treat diabetic patients. Researchers, however, have not conclusively determined the best control method for APS. Due to intra-/inter-variability of insulin absorption and action, an individualized algorithm is required to control blood glucose level (BGL) for each patient. To this end, we developed model predictive control (MPC) based on artificial neural networks (ANNs), which combines ANN for BGL prediction based on inputs and MPC for BGL control based on the ANN (NN-MPC). First, we developed a mathematical model for diabetic rats, which was used to identify individual virtual subjects by fitting to empirical data collected through an APS, including BGL data, insulin injection, and food intake. Then, the virtual subjects were used to generate datasets for training ANNs. The NN-MPC determines control actions (insulin injection) based on BGL predicted by the ANN. To evaluate the NN-MPC, we conducted experiments using four virtual subjects under three different scenarios. Overall, the NN-MPC maintained BGL within the normal range about 90% of the time with a mean absolute deviation of 4.7 mg/dl from a desired BGL. Our findings suggest that the NN-MPC can provide subject-specific BGL control in conjunction with a closed-loop APS.

ᅟ













Similar content being viewed by others
References
Bruni A, Gala-Lopez B, Pepper AR, Abualhassan NS, Shapiro AJ (2014) Islet cell transplantation for the treatment of type 1 diabetes: recent advances and future challenges. Diabetes Metab Syndr Obes 7:211–223. https://doi.org/10.2147/DMSO.S50789
Kitabchi AE, Umpierrez GE, Miles JM, Fisher JN (2009) Hyperglycemic crises in adult patients with diabetes. Diabetes Care 32:1335–1343. https://doi.org/10.2337/dc09-9032
McCrimmon RJ, Sherwin RS (2010) Hypoglycemia in type 1 diabetes. Diabetes 59:2333–2339. https://doi.org/10.2337/db10-0103
Kawahito S, Kitahata H, Oshita S (2009) Problems associated with glucose toxicity: role of hyperglycemia-induced oxidative stress. World J Gastroenterol 15:4137–4142
Kollind M, Adamson U, Lins PE, Curstedt T (1988) Importance of growth hormone for blood glucose regulation following insulin-induced nocturnal hypoglycemia in insulin-dependent diabetes mellitus. Acta Med Scand 223:159–164
Campos-Delgado DU, Hernandez-Ordonez M, Femat R, Gordillo-Moscoso A (2006) Fuzzy-based controller for glucose regulation in type-1 diabetic patients by subcutaneous route. IEEE Trans Biomed Eng 53:2201–2210. https://doi.org/10.1109/TBME.2006.879461
Ibbini MS, Masadeh MA (2005) A fuzzy logic based closed-loop control system for blood glucose level regulation in diabetics. J Med Eng Technol 29:64–69. https://doi.org/10.1080/03091900410001709088
Bergman RN, Ider YZ, Bowden CR, Cobelli C (1979) Quantitative estimation of insulin sensitivity. Am J Phys 236:E667–E677
Chen CL, Tsai HW (2010) Modeling the physiological glucose-insulin system on normal and diabetic subjects. Comput Methods Prog Biomed 97:130–140. https://doi.org/10.1016/j.cmpb.2009.06.005
Dalla Man C, Rizza RA, Cobelli C (2007) Meal simulation model of the glucose-insulin system. IEEE Trans Biomed Eng 54:1740–1749. https://doi.org/10.1109/TBME.2007.893506
Finan DA, Palerm CC, Doyle FJ, Seborg DE, Zisser H, Bevier WC, Jovanovič L (2009) Effect of input excitation on the quality of empirical dynamic models for type 1 diabetes. AICHE J 55:1135–1146. https://doi.org/10.1002/aic.11699
Hovorka R, Canonico V, Chassin LJ, Haueter U, Massi-Benedetti M, Orsini Federici M, Pieber TR, Schaller HC, Schaupp L, Vering T, Wilinska ME (2004) Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol Meas 25:905–920
Chee F, Fernando TL, Savkin AV, van Heeden V (2003) Expert PID control system for blood glucose control in critically ill patients. IEEE Trans Inf Technol Biomed 7:419–425
Marchetti G, Barolo M, Jovanovic L, Zisser H, Seborg DE (2008) An improved PID switching control strategy for type 1 diabetes. IEEE Trans Biomed Eng 55:857–865. https://doi.org/10.1109/TBME.2008.915665
Al Seyab RK, Cao Y (2008) Differential recurrent neural network based predictive control. Comput Chem Eng 32:1533–1545. https://doi.org/10.1016/j.compchemeng.2007.07.007
Lee H, Bequette BW (2009) A closed-loop artificial pancreas based on model predictive control: human-friendly identification and automatic meal disturbance rejection. Biomed Signal Process Control 4:347–354. https://doi.org/10.1016/j.bspc.2009.03.002
Magni L, Raimondo DM, Bossi L, Man CD, De Nicolao G, Kovatchev B, Cobelli C (2007) Model predictive control of type 1 diabetes: an in silico trial. J Diabetes Sci Technol 1:804–812. https://doi.org/10.1177/193229680700100603
Patek SD, Bequette BW, Breton M, Buckingham BA, Dassau E, Doyle FJ 3rd, Lum J, Magni L, Zisser H (2009) In silico preclinical trials: methodology and engineering guide to closed-loop control in type 1 diabetes mellitus. J Diabetes Sci Technol 3:269–282. https://doi.org/10.1177/193229680900300207
Schlotthauer G, Gamero LG, Torres ME, Nicolini GA (2006) Modeling, identification and nonlinear model predictive control of type I diabetic patient. Med Eng Phys 28:240–250. https://doi.org/10.1016/j.medengphy.2005.04.009
Zarkogianni K, Mougiakakou SG, Prountzou A, Vazeou A, Bartsocas CS, Nikita KS (2007) An insulin infusion advisory system for type 1 diabetes patients based on non-linear model predictive control methods. Conf Proc IEEE Eng Med Biol Soc 2007:5972–5975. https://doi.org/10.1109/IEMBS.2007.4353708
Bothe MK, Dickens L, Reichel K, Tellmann A, Ellger B, Westphal M, Faisal AA (2013) The use of reinforcement learning algorithms to meet the challenges of an artificial pancreas. Expert Rev Med Devic 10:661–673. https://doi.org/10.1586/17434440.2013.827515
de Canete JF, Gonzalez-Perez S, Ramos-Diaz J (2012) Artificial neural networks for closed loop control of in silico and ad hoc type 1 diabetes. Comput Methods Prog Biomed 106:55–66
Pappada SM, Cameron BD, Rosman PM (2008) Development of a neural network for prediction of glucose concentration in type 1 diabetes patients. J Diabetes Sci Technol 2:792–801. https://doi.org/10.1177/193229680800200507
Perez-Gandia C, Facchinetti A, Sparacino G, Cobelli C, Gomez EJ, Rigla M, de Leiva A, Hernando ME (2010) Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring. Diabetes Technol Ther 12:81–88. https://doi.org/10.1089/dia.2009.0076
Leon BS, Alanis AY, Sanchez EN, Ornelas-Tellez F, Ruiz-Velazquez E (2012) Inverse optimal neural control of blood glucose level for type 1 diabetes mellitus patients. J Frankl I 349:1851–1870. https://doi.org/10.1016/j.jfranklin.2012.02.011
Kuure-Kinsey M, Cutright R, Bequette BW (2006) Computationally efficient neural predictive control based on a feedforward architecture. Ind Eng Chem Res 45:8575–8582. https://doi.org/10.1021/ie060246y
Piche S, Sayyar-Rodsari B, Johnson D, Gerules M (2000) Nonlinear model predictive control using neural networks. IEEE Contr Syst 20:53–62. https://doi.org/10.1109/37.845038
Lombarte M, Lupo M, Campetelli G, Basualdo M, Rigalli A (2013) Mathematical model of glucose-insulin homeostasis in healthy rats. Math Biosci 245:269–277. https://doi.org/10.1016/j.mbs.2013.07.017
Wilinska ME, Chassin LJ, Schaller HC, Schaupp L, Pieber TR, Hovorka R (2005) Insulin kinetics in type-I diabetes: continuous and bolus delivery of rapid acting insulin. IEEE Trans Biomed Eng 52:3–12. https://doi.org/10.1109/TBME.2004.839639
Brenner M, Abadi SEM, Balouchzadeh R, Lee HF, Ko HS, Johns M, Malik N, Lee JJ, Kwon G (2017) Estimation of insulin secretion, glucose uptake by tissues, and liver handling of glucose using a mathematical model of glucose-insulin homeostasis in lean and obese mice. Heliyon 3:e00310. https://doi.org/10.1016/j.heliyon.2017.e00310
İçer S, Kara S, Güven A (2006) Comparison of multilayer perceptron training algorithms for portal venous doppler signals in the cirrhosis disease. Expert Syst Appl 31:406–413. https://doi.org/10.1016/j.eswa.2005.09.037
Park S, Balouchzadeh R, Ko HS, Lee HF, Kwon G Establishing an animal model artificial pancreas system to study blood glucose levels in real-time. In: Proceedings of the 2017 BMES Annual Meeting, Abstract nr FRI-513
Steil GM (2013) Algorithms for a closed-loop artificial pancreas: the case for proportional-integral-derivative control. J Diabetes Sci Technol 7:1621–1631
Bequette BW (2013) Algorithms for a closed-loop artificial pancreas: the case for model predictive control. J Diabetes Sci Technol 7:1632–1643
Parker RS, Doyle FJ III, Ward JH, Peppas NA (2000) Robust H∞ glucose control in diabetes using a physiological model. AICHE J 46:2537–2549. https://doi.org/10.1002/aic.690461220
Ramos C, Martínez M, Sanchis J, Herrero JM (2008) Robust and stable predictive control with bounded uncertainties. J Math Anal Appl 342:1003–1014. https://doi.org/10.1016/j.jmaa.2007.12.073
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
All animal maintenance and treatment protocols complied with the Guide for Care and Use of Laboratory Animals as adopted by the National Institute of Health and approved by the Southern Illinois University Edwardsville (SIUE) Institutional Animal Care and Use Committee (IACUC).
Rights and permissions
About this article
Cite this article
Bahremand, S., Ko, H.S., Balouchzadeh, R. et al. Neural network-based model predictive control for type 1 diabetic rats on artificial pancreas system. Med Biol Eng Comput 57, 177–191 (2019). https://doi.org/10.1007/s11517-018-1872-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11517-018-1872-6