Abstract
Over the last few years, Internet of Things (IoT) has opened the doors to innovations that facilitate interactions among things and humans. Focusing on healthcare domain, IoT devices such as medical sensors, visual sensors, cameras, and wireless sensor network are leading this evolutionary trend. In this direction, the paper proposes a novel, IoT-aware student-centric stress monitoring framework to predict student stress index at a particular context. Bayesian Belief Network (BBN) is used to classify the stress event as normal or abnormal using physiological readings collected from medical sensors at fog layer. Abnormal temporal structural data which is time-enriched dataset sequence is analyzed for various stress-related parameters at cloud layer. To compute the student stress index, a two-stage Temporal Dynamic Bayesian Network (TDBN) model is formed. This model computes stress based on four parameters, namely, leaf node evidences, workload, context, and student health trait. After computing the stress index of the student, decisions are taken in the form of alert generation mechanism with the deliverance of time-sensitive information to caretaker or responder. Experiments are conducted both at fog and cloud layer which hold evidence for the utility and accuracy of the BBN classifier and TDBN predictive model in our proposed system.
Similar content being viewed by others
References
Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of Things (IoT): A vision, architectural elements, and future directions. Fut Gener Comput Syst 29(7):1645–1660. https://doi.org/10.1016/j.future.2013.01.010
Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M (2015) Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun Surv Tuts 17(4):2347–2376. https://doi.org/10.1109/COMST.2015.2444095
Zheng J, Ha C, Zhang Z (2017) Design and evaluation of a ubiquitous chest-worn cardiopulmonary monitoring system for healthcare application: a pilot study. Med Biol Eng Comput 55(2):283–294. https://doi.org/10.1007/s11517-016-1518-5
Dastjerdi AV, Buyya R (2016) Fog computing: Helping the Internet of Things realize its potential. Computer 49(8):112–116. https://doi.org/10.1109/MC.2016.245
Verma P, Sood SK (2018) Fog assisted-IoT enabled patient health monitoring in smart homes. IEEE Internet Things J 5(3):1789–1796. https://doi.org/10.1109/JIOT.2018.2803201
Jovanov E, Lords AD, Raskovic D, Cox PG, Adhami R, Andrasik F (2003) Stress monitoring using a distributed wireless intelligent sensor system. IEEE Eng Med Biol 22(3):49–55. https://doi.org/10.1109/MEMB.2003.1213626
Suzuki S, Matsui T, Imuta H, Uenoyama M, Yura H, Ishihara M, Kawakami M (2008) A novel autonomic activation measurement method for stress monitoring: non-contact measurement of heart rate variability using a compact microwave radar. Med Biol Eng Comput 46(7):709–714. https://doi.org/10.1007/s11517-007-0298-3
Ayzenberg Y, Rivera JH, Picard R (2012) FEEL: frequent EDA and event logging -a mobile social interaction stress monitoring system. In: CHI’12 Extended Abstracts on Human Factors in Computing Systems. ACM, pp 2357–2362)
Shen YH, Zheng JW, Zhang ZB, Li CM (2012) Design and implementation of a wearable, multiparameter physiological monitoring system for the study of human heat stress, cold stress, and thermal comfort. Instrum Sci Technol 40(4):290–304. https://doi.org/10.1080/10739149.2012.673193
Tartarisco G, Baldus G, Corda D, Raso R, Arnao A, Ferro M, Gaggioli A, Pioggia G (2012) Personal health system architecture for stress monitoring and support to clinical decisions. Comput Commun 35 (11):1296–1305. https://doi.org/10.1016/j.comcom.2011.11.015
Yoon S, Sim JK, Cho YH (2014) On-chip flexible multi-layer sensors for human stress monitoring. In: IEEE conference Sensors, pp 851–854. https://doi.org/10.1109/ICSENS.2014.6985133
Sheng Z, Yang S, Yu Y, Vasilakos A, Mccann J, Leung K (2013) A survey on the ietf protocol suite for the internet of things: standards, challenges, and opportunities. IEEE Wirel Commun 20(6):91–98. https://doi.org/10.1109/MWC.2013.6704479
Zhou J, Cao Z, Dong X, Xiong N, Vasilakos AV (2014) 4S: A secure and privacy-preserving key management scheme for cloud-assisted wireless body area network in m-healthcare social networks. Inf Sci 331:255-276. https://doi.org/10.1016/j.ins.2014.09.003
Tsai CW, Lai CF, Vasilakos AV (2014) Future Internet of Things: open issues and challenges. Wireless Netw 20(8):2201–2217. https://doi.org/10.1007/s11276-014-0731-0
Fortino G, Di Fatta G, Pathan M, Vasilakos AV (2014) Cloud-assisted body area networks: state-of-the-art and future challenges. Wireless Netw 20(7):1925–1938. https://doi.org/10.1007/s11276-014-0714-1
Chouvarda IG, Goulis DG, Lambrinoudaki I, Maglaveras N (2015) Connected health and integrated care: Toward new models for chronic disease management. Maturitas 82(1):22–27. https://doi.org/10.1016/j.maturitas.2015.03.015
Qin Y, Sheng QZ, Falkner NJ, Dustdar S, Wang H, Vasilakos AV (2016) When things matter: a survey on data-centric internet of things. J Netw Comput Appl 64:137–153. https://doi.org/10.1016/j.jnca.2015.12.016
Zhang D, He Z, Qian Y, Wan J, Li D, Zhao S (2016) Revisiting unknown RFID tag identification in large-scale internet of things. IEEE Wirel Commun 23(5):24–29. https://doi.org/10.1109/MWC.2016.7721738
Amadeo M, Campolo C, Quevedo J, Corujo D, Molinaro A, Iera A, Aguiar RL, Vasilakos AV (2016) Information-centric networking for the internet of things: challenges and opportunities. IEEE Netw 30 (2):92–100. https://doi.org/10.1109/MNET.2016.7437030
Wan J, Tang S, Shu Z, Li D, Wang S, Imran M, Vasilakos AV (2016) Software-defined industrial internet of things in the context of industry 4.0. IEEE Sens J 16(20):7373–7380. https://doi.org/10.1109/JSEN.2016.2565621
Azimi I, Rahmani AM, Liljeberg P, Tenhunen H (2017) Internet of things for remote elderly monitoring: a study from user-centered perspective. J Ambient Intell Humaniz Comput 8(2):273–289. https://doi.org/10.1007/s12652-016-0387-y
Ghanavati S, Abawajy JH, Izadi D, Alelaiwi AA (2017) Cloud-assisted IoT-based health status monitoring framework. Cluster Comput 20(2):1843–1853. https://doi.org/10.1007/s10586-017-0847-y
Yang Z, Zhou Q, Lei L, Zheng K, Xiang W (2016) An IoT-cloud based wearable ECG monitoring system for smart healthcare. J Med Syst 40(12):286. https://doi.org/10.1007/s10916-016-0644-9
Wu T, Wu F, Redouté J M, Yuce MR (2017) An autonomous wireless body area network implementation towards IoT connected healthcare applications. IEEE Access 5:11413–11422. https://doi.org/10.1109/ACCESS.2017.2716344
Ahmad M, Amin MB, Hussain S, Kang BH, Cheong T, Lee S (2016) Health Fog: a novel framework for health and wellness applications. J Supercomput 72(10):3677–3695. https://doi.org/10.1007/s11227-016-1634-x
Vu THN, Park N, Lee YK, Lee Y, Lee JY, Ryu KH (2010) Online discovery of Heart rate variability patterns in mobile healthcare services. J Syst Softw 83(10):1930–1940. https://doi.org/10.1016/j.jss.2010.05.074
Alberdi A, Aztiria A, Basarab A (2016) Towards an automatic early stress recognition system for office environments based on multimodal measurements: a review. J Biomed Inform 59:49–75. https://doi.org/10.1016/j.jbi.2015.11.007
Van Breda W, Hoogendoorn M, Eiben AE, Berking M (2017) Assessment of temporal predictive models for health care using a formal method. Comput Biol Med 87:347–357. https://doi.org/10.1016/j.compbiomed.2017.06.014
Forkan ARM, Khalil I, Atiquzzaman M (2017) Visibid: A learning model for early discovery and real-time prediction of severe clinical events using vital signs as big data. Comput Netw 113:244–257. https://doi.org/10.1016/j.comnet.2016.12.019
Karumbaya A, Satheesh G (2015) Iot empowered real time environment monitoring system. Int J Comput Appl 129(5):30–32. https://doi.org/10.5120/ijca2015906917
Zhu Z, Ji Q (2005) Robust real-time eye detection and tracking under variable lighting conditions and various face orientations. Comput Vis Image Underst 98(1):124–154. https://doi.org/10.1016/j.cviu.2004.07.012
Koldijk S, Sappelli M, Verberne S, Neerincx MA, Kraaij W (2014) The SWELL knowledge work dataset for stress and user modeling research. In: 16th International Conference on Multimodal Interaction, pp 291–298. https://doi.org/10.1145/2663204.2663257
Lauría E J, Duchessi PJ (2006) A Bayesian belief network for IT implementation decision support. Decis Support Syst 42(3):1573–1588. https://doi.org/10.1016/j.dss.2006.01.003
Bobadilla J, Ortega F, Hernando A, Gutiérrez A (2013) Recommender systems survey. Knowl Based Syst 46:109–132. https://doi.org/10.1016/j.knosys.2013.03.012
Mukaka MM (2012) A guide to appropriate use of correlation coefficient in medical research. Malawi Med J 24(3):69–71
Sacchi L, Larizza C, Combi C, Bellazzi R (2007) Data mining with temporal abstractions: learning rules from time series. Data Min Knowl Discov 15(2):217–247. https://doi.org/10.1007/s10618-007-0077-7
Wang L, Tao J, Ranjan R, Marten H, Streit A, Chen J, Chen D (2013) G-hadoop: Mapreduce across distributed data centers for data-intensive computing. Future Gener Comput Syst 29(3):739–750. https://doi.org/10.1016/j.future.2012.09.001
Liu Y, Xu L, Li M (2017) The parallelization of back propagation neural network in MapReduce and Spark. Int J Parallel Prog 45(4):760–779. https://doi.org/10.1007/s10766-016-0401-1
Wang JG, Sung E (2002) Study on eye gaze estimation. IEEE Trans Syst Man Cybern B Cybern 32(3):332–350. https://doi.org/10.1109/TSMCB.2002.999809
Morimoto CH, Mimica MR (2005) Eye gaze tracking techniques for interactive applications. Comput Vis Image Underst 98(1):4–24. https://doi.org/10.1016/j.cviu.2004.07.010
Zhu Z, Ji Q (2004) Real time 3d face pose tracking from an uncalibrated camera. In: IEEE Computer Vision and Pattern Recognition Workshop CVPRW’04, pp 73–73. https://doi.org/10.1109/CVPR.2004.424
Tian Y, Kanade T, Cohn JF (2011) Facial expression recognition. In: Handbook of face recognition. https://doi.org/10.1007/978-0-387-73003-5_98. Springer, London, pp 487–519
Ma L, Khorasani K (2004) Facial expression recognition using constructive feedforward neural networks. IEEE Trans Syst Man Cybern B Cybern 34(3):1588–1595. https://doi.org/10.1109/TSMCB.2004.825930
Plaut DC, Vande Velde AK (2017) Statistical learning of parts and wholes: a neural network approach. J Exp Psychol Gen 146(3):318–336. https://doi.org/10.1037/xge0000262
Verma P, Sood SK, Kalra S (2017) Cloud-centric IoT based student healthcare monitoring framework. J Ambient Intell Human Comput:1-17. https://doi.org/10.1007/s12652-017-0520-6
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Verma, P., Sood, S.K. A comprehensive framework for student stress monitoring in fog-cloud IoT environment: m-health perspective. Med Biol Eng Comput 57, 231–244 (2019). https://doi.org/10.1007/s11517-018-1877-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11517-018-1877-1